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the Golay code and the Leech lattice (a packing of spheres in 24-dimensional 
Euclidean space which serves as an illustration of an excellent code for the 
Gaussian channel and as a point of connection with finite group theory, since 
the Leech lattice is the object which is preserved by Conway's group of order 
8,315,553,613,086,720,000). 

Had the book been written primarily for communication engineers, it might 
have included a more detailed overview of the current implementation costs 
for various types of decoders. Recent breakthroughs in the architecture of 
decoders, as well as recent and projected developments in the technology of 
large-scale integrated digital circuits, have resulted in enormous decreases in 
the costs of implementing decoders for long algebraic codes. In the reviewer's 
opinion, threshold decoding is no longer a promising area for further work 
because long algebraic codes already provide much better performance for at 
most slightly greater cost. Sequential decoding is even less competitive. A 
book directed primarily toward an audience of communication engineers 
might have also presented a more detailed (and admittedly controversial) 
examination of the relative merits of current block decoders vs. current 
convolutional decoders. Although McEliece's book gives a nice description of 
the suitability of Viterbi (convolutional) decoders for transmitting voice or 
pictures over white Gaussian noise channels, it does not discuss the 
numerous other factors which can now tip the scales in favor of long block 
codes. For example, jamming noise or burst noise from any source both cause 
considerably more problems for convolutional decoders than for long block 
decoders. High information rates or high performance requirements also 
favor long block codes. 

Had the book been written a year later, it would have surely included 
Lovasz' very recent elegant solution to Shannon's classic problem of zero-
error capacity, and some of the many exciting extensions of that result which 
McEliece himself has been pursuing in recent weeks. 

However, had any of these "post facto" suggestions been pursued very far, 
The theory of information and coding would not be the broadly oriented, 
timely, introductory, superbly accessible encyclopedia that it is. 

E. R. BERLEKAMP 
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Matroid theory, by D. J. A. Welsh, Academic Press, London, New York, San 
Francisco, 1976, xi + 433 pp., $38.00 

The term "matroid" was coined by Hassler Whitney in the 1930s to 
describe a system with an abstract linear dependence relation. He took as a 
model the linearly independent sets of column vectors of a matrix over a 
field. Thus a matroid consists of a finite set E and a distinguished collection 
$ of subsets (called independent sets) of E having the properties 

(I,) Any subset of a member of S belongs to S ; 
(I2) Any two members of & which are maximal in a subset of S of E have 

the same cardinality. 
If S C E and p(5) denotes the common cardinality of the sets of & which 
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are maximal in S, then p is a rank function on the subsets of E having the 
properties 

(R,)0 <p(S)<\S\; 
(R^ If S C T, then p(S) < p(T); 
(R3) p(S u T) + p(S nT)< (KS) + p(T). 
The rank function p abstracts the notion of the dimension of the subspace 

spanned by a set of vectors. Furthermore the rank function can be used to 
define the matroid. Namely, if p is a rank function on the subsets of E 
satisfying (R, ) -^) , then the subsets S for which p(S) = \S\ are the inde
pendent sets of a matroid. _ 

If p is the rank function of a matroid on the set E and S C E,Jet S consist 
of the elements x of E such that p(5 u {*}) = p(S). Then S -» S is a closure 
operator on the subsets of E having the exchange property. 

(C,) If x E S u {j>}_and;c $ 5, then>> 6 S u {x}. 
Conversely, if S -* S is a closure operator defined on the subsets S of E 

satisfying (C,), then the subsets S such that x £ S - {*} for all x E S are 
the independent set of a matroid. _ 

Finally, the closed subsets S for which S = S form a lattice under set 
inclusion. The closures of the one-element subsets are the atoms of the lattice 
and each closed subset is the join of the atoms which it contains. If S is 
closed and x & S, then by (Cx) the closure of S U {x} covers S. Hence the 
lattice of closed subsets is a semimodular point lattice. Such a lattice is called 
a geometric lattice since its elements are the analogue of flats in a geometry 
and p plays the role of a dimension function. It should be noted that if E is 
the set of atoms of geometric lattice, the subsets S of E such that x < V (S 
— x) all x E S are the independent sets of a matroid. 

Almost immediately after Whitney introduced matroids, G. Birkhoff noted 
that the study of matroids was essentially equivalent to the study of geometric 
lattices. A year or two later, Saunders Mac Lane observed that the matroid 
axioms were satisfied by the notion of algebraic independence in field 
extensions and went on to generalize the ideas to infinite systems. Apart from 
some studies of geometric lattices by the reviewer in the 1940s there was little 
activity until the late 1950s when W. Tutte published his fundamental papers 
on matroids and graphs. Whitney had observed that the edge set of a graph 
becomes a matroid if the independent sets of edges are the sets containing no 
cycles. This matroid is called the cycle matroid of the graph and matroids 
which arise in this manner are said to be graphic. Exploiting this relationship 
between matroids and graphs, Tutte established a number of deep results. In 
particular, he gave an intrinsic characterization of graphic matroids. The 
work of Tutte stimulated a lively investigation of matroids from a graph 
theoretic viewpoint. 

The first hint of possible applications of matroid theory to combinatorics 
came in the early 1940s with R. Rado's discovery of an analogue for 
matroids of P. Hall's theorem on representatives of sets. A couple of decades 
later, Edmonds and Fulkerson showed that the partial transversals of a family 
of subsets of a finite set can be taken as the independent sets of a matroid. 
From this observation came a variety of applications of matroid theory to 
combinatorial problems related to covering, packing, and transversal theory. 
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For example, a typical result states that a matroid E is the union of k 
independent sets if and only if kp{S) > \ S | for all subsets S of E. In the late 
1960s and early 1970s, G. Rota and his associates undertook a broad range 
development of combinatorial theory from a matroid perspective. An impor
tant feature of this approach is the geometric framework in which many 
combinatorial problems are placed. Thus many geometric combinatorial 
properties of vector spaces have been shown to have matroid analogues. 

Most of the investigations in the 1950s and 1960s were directed toward the 
basic problem of characterizing the classes of matroids arising from specific 
applications. In fact, Whitney posed the problem of characterizing those 
matroids which can be represented as matroids formed from a set of vectors 
of a vector space. This is a coordinatization problem which is still unsolved, 
although a number of characterizations have been given for specific fields. As 
mentioned above, Tutte provided a deep and elegant characterization of 
graphic matroids. A truly satisfactory characterization of transversal graphs 
has not been found although there are a number of results relating this 
characterization problem to other representation problems. In addition to the 
characterization problems there has been a continuing effort to use matroid 
techniques to simplify and extend a variety of combinatorial results. 

The first half of Welsh's book is devoted to developing the elementary 
properties of matroids, describing the standard examples, and giving an 
account of the results of the investigations summarized in the previous 
paragraphs. The author tends to present the simpler proofs and refer the 
reader to the literature for the more difficult proofs. Although this is a fairly 
common practice it has the disadvantage of frequently disguising the relative 
importance of the results. This is particularly true when a rather minor 
theorem is included because it has a short and elegant proof. Fortunately, 
Welsh does make a point of emphasizing the more important contributions to 
the theory whether or not proofs are given. As far as subject matter is 
concerned, the first half of the book, while more up-to-date, covers much the 
same ground as the book, On the foundations of combinatorial theory: Combi
natorial geometries, by Crapo and Rota. While Crapo and Rota adopt a 
geometric, lattice theoretic approach, Welsh sticks as strictly as possible to 
matroid-theoretic methods. Indeed, the presentation gives the impression that 
he would have preferred avoiding lattice theory altogether. However, there 
are important problem areas, for example, the Unimodality and Logarithmic 
Concavity Conjectures for the Whitney numbers, which are most naturally 
approached from a lattice point of view. Furthermore, questions of structure 
are usually handled more effectively in a lattice framework. As an introduc
tion to the subject, the reader will probably find that the choice between the 
two approaches is largely a matter of taste. 

The second half of the book is more technical in nature treating a variety 
of topics currently being investigated. In some cases the connection with 
matroid theory proper is a bit tenuous. Furthermore the selection of some 
topics clearly reflects the special interests of the author. Nevertheless, it does 
provide a sampling of the many different directions which current research is 
taking. 

The book is not without some deficiencies. In each of the portions which 
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the reviewer read carefully, a number of minor misprints and errors were 
found. Thus the reader should be warned to proceed with some care. Some of 
the terminology adopted by the author is unfortunate. For example, the term 
"simple" is used to describe matroids which have been trivially reduced by 
identifying mutually dependent elements. However, this term when applied to 
geometric lattices means something quite different. Since matroids and 
geometric lattices are so closely related, this terminology could lead to some 
confusion. 

As in many recent books, the sets of exercises tend to be miscellaneous 
collections of results which the author decided not to include in the main 
body of the text. They vary in difficulty from trivialities to results which were 
only obtained through a major research effort. Unless the reader is an expert 
in the field he may find it hard to distinguish these two categories. Exercises 
make a significant contribution to a book at this level when they stimulate the 
reader's interest and provide him with an attractive opportunity to test his 
understanding of the material. In order to do this, the exercises should be 
carefully selected with regard to interest, subject matter content, and level of 
difficulty. Unfortunately, the exercise sets in this volume do not show this 
kind of careful preparation. 

In spite of these shortcomings, this account of the present status of matroid 
theory will be a useful resource for both the novice and the expert in this 
subject area. 

R. P. DlLWORTH 
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 84, Number 6, November 1978 
© American Mathematical Society 1978 

The theory of error-correcting codes. I and II, by F. J. MacWilliams and N. J. 
A. Sloane, North-Holland, Amsterdam, New York, Oxford, 1977, ix + 762 
pp., $50.95. 

The first few sentences of the preface are as follows: "Coding theory began 
in the late 1940s with the work of Golay, Hamming and Shannon. Although it 
has its origins in an engineering problem, the subject has developed by using 
more and more sophisticated mathematical techniques. It is our goal to 
present the theory of error-correcting codes in a simple, easily understandable 
manner, and yet also to cover all the important aspects of the subject." The 
authors have been eminently successful in attaining their goal. For this reason 
these volumes are excellent as a text. They are also excellent as a reference for 
people working in coding as well as other mathematicians who are interested 
in applications of algebra or combinatorics or just interested in this new, 
fascinating subject. Since Shannon first demonstrated, using probabilistic 
methods, that one could communicate as reliably as desired by using long 
enough error-correcting codes, much work has gone into this subject by both 
mathematicians and electrical engineers. This has resulted in the construction 
and analysis of various codes and families of codes and the devising of 
practical decoding algorithms. It has also resulted in a growing mathematical 
theory of error-correcting codes which uses techniques from a variety of 
different areas as well as its own techniques. 


