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For the general public, catastrophe theory (or CT) has become the biggest 
thing in mathematics. René Thorn and Christopher Zeeman are the two 
leaders of this field. L'Express (October 14-30, 1974) asserts that the "new 
Newton" is French (i.e. Thorn). An announcement of Zeeman's lecture at 
Northwestern University in the spring of 1977 contains a quote describing 
catastrophe theory as the most important development in mathematics since 
the invention of calculus 300 years ago. Newsweek has given similar 
comparisons. Zeeman juxtaposes Newton and Thorn in the volume under 
review (briefly ZCT), p. 623. Thorn writes " . . . CT is-quite likely-the first 
coherent attempt (since Aristotelian Logic) to give a theory on analogy" [p. 
637, ZCT]. On the back cover of Thorn's book, Structural stability and 
morphogenesis [English translation, Benjamin, 1975 or Thorn's SSM], is the 
quote from the London Times review, "In one sense the only book with 
which it can be compared is Newton's Principia" 

Recently however, the importance of CT has been sharply and publicly 
challenged by Hector Sussman and subsequently by Sussman and Raphael 
Zahler [Catastrophe theory as applied to the social and biological sciences: A 
critique to appear in Synthese]. A critical story on CT by Gina Kolata in 
"Science", April 15, 1977, is headed: Catastrophe theory: The emperor has no 
clothes. A front page story on the New York Times, November 19, 1977 
focuses on the challenges to CT. 

To write a review in this environment has a very personal side for me. On 
one hand my own work on dynamical systems is closely connected to the 
origins of CT. I have had a long and close personal and professional 
relationship with both Thorn and Zeeman. More than 20 years ago I was 
discussing singularities of maps, transversality, and immersions with René 
Thorn. Thorn tried to interest me in an early draft of chapters of his book 
Structural stability and morphogenesis in 1966. 

On the other hand I have remained skeptical and aloof from CT, perhaps 
due to my conservatism in science. While my colleagues and students were 
showing enthusiasm for CT, I gave critical lectures, one at the University of 
Chicago in 1974, one at the Aspen Institute of Physics in 1975. More recently 
I have been quoted negatively in the "Science" and New York Times 
references above. This is the first time I have written on the subject, and I 
should warn the reader of this negative bias, far from shared by many of my 
fellow mathematicians. 

Some of the mathematics underlying CT, especially transversality, and 
singularities of maps, has played a constructive role in outside disciplines, and 
is destined to play an ever increasing role. On the other hand I feel that CT 
itself has limited substance, great pretension and that catastrophe theorists 
have created a false picture in the mathematical community and the public as 
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to the power of CT to solve problems in the social and natural sciences. It is 
to the credit of Sussman and Zahler that they have seriously challenged this 
false picture. 

On this matter of warning to the reader, there is also the problem of my 
"quoting out of context". In fact the quotes I have made above and will make 
below are often imbedded in more prosaic language, perhaps tempering the 
brief and sometimes sharp sounding statements I refer to. 

At this point, I would like to acknowledge my debt to J. Guckenheimer, C. 
Zeeman, H. Sussman, and M. Hirsch among others for very useful 
conversations on the subject here. Besides the work of Thorn and Zeeman, on 
Catastrophe Theory, I have also learned much from that of Sussman and 
Zahler. 

Just what is Catastrophe Theory? Thorn writes that CT " . . . has to be 
considered as a theory of general morphology" 633, ZCT and Zeeman "CT is 
a new mathematical method for describing the evolution of forms in nature." 
(1, ZCT). 

However the new mathematics associated to CT really is contained in what 
is called elementary catastrophe theory (ECT) by Thorn and Zeeman. Very 
briefly, ECT studies a smooth real valued map ƒ as a function (often called a 
"potential function") of a state x and parameter JU,. Here the state lies in some 
Euclidean space and jut also varies in a (usually low dimensional) Euclidean 
space. The problem is to find local canonical forms for "generic" ƒ, using a 
smooth change of coordinates in the variables x, /x, y = ƒ (x, /x). In this case, 
"generic" means for an open dense subset in a suitable function space. A 
local canonical form is defined in a neighborhood of a pair (x0, /XQ) at which ƒ 
is singular. ECT solves this problem when /i is in a low ( < 5) dimensional 
space. In particular, when /i lies in a 4 dimensional space (e.g. space-time), 
Thorn found seven canonical forms. We will shortly describe the case of the 
cusp catastrophe where x is in R and /x in R2. 

Is CT much more than ECT? Here Thorn and Zeeman differ. Thorn writes 
" . . . that Christopher's criticisms arise basically from a strict dogmatic view 
of CT which he identifies with E C T . . . " 633, ZCT. Zeeman replies (same 
page) that his emphasis on ECT has been mainly because of its usefulness in 
applications. In fact, the book under review, although titled CT, deals almost 
completely with ECT (its mathematics and applications). 

In my mind, when CT goes beyond ECT it loses pretty much any direct 
touch with mathematics. It is true that Thorn refers to nonelementary CT as 
"generalized catastrophes, composed map catastrophes, (7-invariant 
catastrophes" etc. 633, ZCT. But here the relationship of the mathematics to 
nature in the CT literature becomes tenuous and infrequent. For example in 
Thorn (SSM), the words "generalized catastrophe" are used to describe 
situations where no mathematical model is proposed. More particularly under 
the picture of "feather buds on a chicken embryo", Thorn writes "a generali­
zed catastrophe and example of symmetry in biology" (Figure 21, Thom's 
SSM). He labels a picture of "the Crab nebula, the remains of the explosion 
of a supernova" with "a partially filament catastrophe in astrophysics" 
(Figure 17, Thom's SSM). Thorn described the filament catastrophe as a 
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certain "codimension two" type of generalized catastrophe, but the 
mathematics is not specified. 

No doubt it is in this spirit Thorn writes (p. 189 in Structural stability, 
catastrophe theory and applied mathematics, SIAM Rev., April, 1977) "The 
truth is that CT is not a mathematical theory, but a body of ideas, I dare say 
a state of mind." 

In ECT, one can take the gradient of the "potential" function with respect 
to the state variable to obtain a dynamical system JC' = grad f^{x) parame­
terized by jm fp(x) » /(JC, (i). It is in this context that Thorn introduced ECT 
in his book SSM, Chapter 5. He takes /i to be in R4 or space-time. Elementary 
catastrophes are defined there as the points JLL of space-time for which the 
qualitative dynamics of JC' = gradj^(jc) changes in a neighborhood of the 
attractors (stable equilibria) of that dynamics. Generalized catastrophes are 
defined analagously where the gradient dynamical systems are replaced by a 
more general class of dynamical systems. 

However the mathematical theorems that Thorn states (later proved by 
Mather) actually give the classification of elementary catastrophes according 
to the theory of singularities of maps in contrast to the theory of dynamical 
systems. Guckenheimer subsequently pointed out (Bull. Amer. Math. Soc. 79 
(1973), 878-890, and in Bifurcation and catastrophe, Dynamical Systems (éd., 
Peixoto) Academic Press, 1973) that the two classifications differ already 
when /i is in R3 (and certainly for /i in R4). I believe this weakens much of the 
scientific or philosophical foundations of CT which is a theory based on 
dynamical systems (Thorn's SSM). If even the elementary catastrophes don't 
correspond to the dynamical classification, what of the generalized 
catastrophes where the mathematics in SSM deals in only a few known 
examples? 

In fact ECT seems much closer to what economists call comparative statics 
than to dynamical systems. 

One can sense a corresponding change of perspective in the work of the 
catastrophe theorists. As we have noted, the starting point of CT in Thorn's 
SSM was the "bifurcations" of dynamical systems parameterized by space-
time. In Zeeman's work, these parameters changed from "space-time" to 
"control parameters". Now in his SIAM article (cited above) Thorn also 
speaks of control parameters and seems to de-emphasize the dynamical 
system foundations of CT, especially relative to space-time. 

The cusp catastrophe is the most important example of a catastrophe and 
much if not most of the book under review (ZCT) centers around the cusp 
catastrophe and its applications. Zeeman with Isnard (ZCT, 329 in Some 
models from catastrophe theory in the social sciences) describes the canonical 
model as follows. In 3 dimensional space R3, variables (a, b, JC), let M be the 
cubic surface defined by JC3 = a + bx. Here a, b are horizontal axes and are 
the controls; x is the vertical state variable. The fold curve F is where the 
vertical lines are tangent to M and is given by 3JC2 = b. The projection of F 
onto the control space is called the bifurcation set B. The equation of B is 
27a2 = 4 i 3 and has a cusp at the origin. It is supposed that M is given by 
dP/dx = 0 where P is some (probability or potential) function P: R3-»R 
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and that a sociologically (or physically) meaningful subset G of M is the set 
of local maxima (or local minima) of P. 

The state of the system stays on G and is controlled by the choice of (a, b). 
Thus when (a, b) crosses B, the state may be forced to make a discontinuous 
jump to remain on G. 

This is all laid out clearly in the following Figure 330, ZCT from Zeeman 
and Isnard. 

FIGURE 11* 

In the model under discussion, a is a numerical representation of a threat, b 
the cost and x represents military action. The discontinuity, representing a 
jump in military action could be thought of as a declaration of war. 

Thus what Zeeman and Isnard have given us is a model for the study of a 
nation deciding upon its level of action in some war. I consider this paper the 
most developed of Zeeman's papers on CT and the social sciences and he 
writes "And I believe that sociology may well be one of the first fields to feel 
the full impact of this new type of applied mathematics,... " (627, ZCT). 

Sussman and Zahler have discussed this model in detail. Here I would like 
to focus on the question of its justification as a model of military decision 

•Reprinted from the chapter entitled "Some models from catastrophe theory in the social 
sciences" by C. A. Isnard and E. C. Zeeman in The Use of Models in the Social Sciences (Social 
Issues in the Seventies Series) edited by Lyndhurst Collins, Tavistock Publications, London, 
copyright © 1976 Seminars Committee of the Faculty of Social Sciences of the University of 
Edinburgh, Scotland. 
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making; in this I believe the authors have failed. Their efforts in this direction 
lie on the mathematical side. Zeeman and Isnard write " . . . we shall intro­
duce sociological hypotheses, and translate them into mathematics. The deep 
theorems of CT will enable us to synthesize the mathematics. We can then 
translate the synthesis back into sociological conclusions. It is not 
immediately apparent, without the use of the intervening mathematics, that 
the sociological hypotheses imply the sociological conclusions, and that is the 
purpose of using catastrophe theory." (314, ZCT). 

The trouble is with the sociological hypotheses. Evidence for them, or for 
the model, should be given, for example from military history, studies in 
decision making, or sociological, political studies in general. There is much 
theory and data from history and social sciences relevant to the model of 
Zeeman and Isnard. None of this finds its way into the paper directly or 
indirectly save for brief references to Tolstoy on calculus in War and peace 
and Lorenz, On aggression. 

Let us look at some of the sociological hypotheses that Zeeman and Isnard 
in fact do make. Summarized into mathematics, they express these hypotheses 
graphically by: 

cost small 
b = constant 

threat 

FIGURE 6, 316, ZCT 

cost large 
b — constant 

threat 

FIGURE 7, 317, ZCT 
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Zeeman and Isnard then ask how does Figure 6 evolve into Figure 7. "The 
main theorem of CT tells us that qualitatively there is only one way for this 
evolution to occur" [p. 318, ZCT], and they deduce Figure 11, cited above. 

One trouble is the definition for "small" cost and "large" cost that Zeeman 
and Isnard use. They mean there exists b0 such that "small b" means b < b0 

and "large b" means b > b0, the same b0 for "small" and "large". Thus 
Figures 6 and 7 (the sociological hypotheses) already describe the model for 
all b save b0; Figure 6 applies if b < b0, Figure 7 if b > b0 [p. 331, ZCT]. No 
evidence or justification is given for this sociological hypothesis, that such a 
b0 exists (there are arguments given earlier however to justify a "delay rule" 
vs. "Maxwell's rule"). 

In an earlier paper by Zeeman alone on a model for the stock exchange, 
(paper 11 in ZCT), Zeeman uses the words small and large in the same way as 
above [p. 364, ZCT]. Thus his hypotheses already give, without using any 
mathematics at all, the structure of the model as a surface in E3 save for a 
2-dimensional plane described by one control parameter being constant. 
Nevertheless Zeeman refers to these hypotheses as "disconnected" and 
"local". He states: "Summarising: we insert seven disconnected elementary 
local hypotheses into the mathematics, and the mathematics then synthesises 
them for us and hands us back a global dynamic understanding." [p. 362, 
ZCT] and elsewhere in that paper, "We now use the deep classification 
theorem of Thorn to synthesise the information acquired so far into a 
3-dimensional picture of the surface S . . . " [p. 366, ZCT]. Note that Zeeman 
is referring to the same theorem that Thorn credits to Whitney in "Nature", 
December 22, 1977. Thorn referring to Sussman and Zahler writes: "I would 
also like to point out a misquotation by the authors. The classification 
theorem for the "Cusp catastrophe" erroneously quoted as "Thorn's theorem" 
is in this specific case due to H. Whitney." 

No justification for the hypotheses of Zeeman's stock exchange model is 
given in terms of existing data and/or theory of stock exchanges, price 
theory, etc. In fact no reference to any economic literature is given in this 
paper. 

A defense might still be made that even though Zeeman doesn't justify the 
stock exchange or war models, still it is good that he has proposed them. 
Doing so introduces topology (or geometry) into the social sciences and with 
luck sociologists or economists will be able to develop the models, test them, 
verify them, etc. Indeed it is important for scientists, social or otherwise, to be 
aware of mathematical possibilities for models. A positive aspect of all the 
publicity given to CT is that it may have increased this kind of awareness. 

On the other hand good mathematical models are not generated by 
mathematicians throwing models to sociologists, biologists, etc. for the latter 
to pick up and develop. Both Thorn and Zeeman seem to fit this caricature 
sometimes in their work or when they give their views on the future of CT in 
science. Good mathematical models don't start with the mathematics, but 
with a deep study of certain natural phenomena. Mathematical awareness or 
even sophistication is useful when working to model economic phenomena 
for example, but a successful model depends much more on a penetrating 
study and understanding of the economics. 
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On the other hand around CT, not only does mathematics come first but 
one sees a sort of mathematical egocentricity; understanding the world is a 
mathematical (even geometrical) problem. Thorn's position on this is clear; 
e.g. " . . . Eliminate the "obvious" meaning and replace it by the purely 
abstract geometrical manipulation of forms. The only possible theoretisation 
is Mathematical." (638, ZCT) or " . . . I agree with P. Antonelli, when he 
states that theoretical biology should be done in Mathematical Departments; 
we have to let biologists busy themselves with their very concrete-but almost 
meaningless-experiments; in developmental Biology, how could they hope to 
solve a problem they cannot even formulate?" (636, ZCT). 

Along with this mathematical egocentricity there is a kind of mystification 
of the subject that is being created by both Thom and Zeeman. Zeeman does 
this when he speaks of the "deep classification theorem of Thom" as above 
and elsewhere in his papers. Presenting this picture to nonmathematicians 
and even nontopologists has an intimidating effect. Thom does this by using 
technical mathematical terms without explanation when addressing 
nonmathematical audiences, and often writing obscurely. Then Zeeman 
deepens the mystifying power of CT by explaining Thorn's obscurities with: 
"When I get stuck at some point in his writing, and happen to ask him, his 
replies generally reveal a vast new unsuspected goldmine of ideas" (622, 
ZCT). 

Some defenders of CT may accuse me of discussing very special examples 
not characteristic of the literature of the subject. I feel that the problem of 
lack of justification discussed above, is also found in Zeeman's other models. 
Furthermore Thorn's models are even less specific and less developed. On the 
other hand, Thorn's work in CT covers many subjects; in this connection 
Zeeman writes in his Scientific American article, April 1976, p. 65: "The 
method has the potential for describing the evolution of form in all aspects of 
nature, and hence it embodies a theory of great generality." 

Corresponding to the universality of CT is a certain superficiality, almost in 
a dual sense! But one can find even more local maxima in nature than cusps. 

It is Thom and Zeeman who have brought CT to the attention of the 
scientific community with their studies mainly in biology and the social 
sciences. Thus I can't go along with Ian Stewart's assertion, in "Nature", 
December 1, 1977, p. 382, "The case in favour of CT rests not on speculative 
models in the social sciences, but on successful applications to the physical 
sciences." 

I would like to make it clear that I find merit in the Catastrophe theorists 
use of modern calculus and geometric techniques in models in science. In 
particular discontinuities can often best be understood via this kind of 
mathematics. For example it would be important to find a calculus oriented 
model for the computer, a machine which is intrinsically discrete. Such a 
calculus model would not be exact, but it could give great insight to automata 
theory. 

There is much value to science in some of the underlying mathematics of 
CT. I think especially of transversality theory and the theory of singularities 
of maps. The idea of transversality goes back in history, but took a good 
development with Pontryagin and Whitney. Thom had used transversality in 
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his early work and by 1956 was putting the concept into a powerful systema­
tic use with his theorem of transversality of jets. In its modern form, 
transversality for a smooth map/: V-+W, relative to a submanifold M of W 
means that whenever f(x) = y G M, TX(W) = Ty{M) + Df(x)(Tx(V)). In 
other words the derivative of ƒ at x has image complementing the tangent 
space of M at y. In this case the inverse function theorem implies that 
ƒ " l(M) is a submanifold of the expected dimension. 

Transversality has many ramifications, especially when ƒ itself is a deriva­
tive map (or jet map) of some order of another map. These ideas give form to 
the study of singularities of maps. Again it was Thorn who, after fundamental 
work of Whitney, substantially enriched that theory. Now transversal maps 
have the property of being an open and dense subset of an appropriate 
function space. The openness of transversality often can be used to show that 
corresponding models have the important property of robustness. A model is 
robust if the properties under study remain after perturbation. The approxi­
mation properties of transversality imply that one might expect to find 
transversality present in smooth models. For these reasons it is important for 
mathematically oriented scientists to be aware of transversality and such 
examples as cusps. In particular, workers in bifurcation theory from a 
classical point of view should be (and to some extent are) studying these 
modern ideas. 

Elementary catastrophe theory studies a particular class of maps, (the 
target space is 1-dimensional, but parameters are allowed) from the above 
point of view. Sometimes, as in classical mechanics, this situation arises 
naturally. For example, statics in a simple mechanical system (A/, K, V) 
studies the local minimum of the potential. Here K is kinetic energy or a 
Riemannian metric on configuration space M while V: Af-»R is the 
potential energy. Suppose that V depends on a parameter /ut in R* (i.e., 
comparative statics). Then ECT is natural for such a study as in ZCT, # 17, A 
Catastrophe model for the stability of ships. While this kind of mathematics has 
a legitimate and even important place in physics, I must object to Zeeman's 
assertion in the introduction of his ship article (442, ZCT): "it (this example 
SS) is a prototype revealing catastrophe theory as a natural generalization of 
Hamiltonian dynamics." 

More generally the theory of singularities of maps has a constructive role to 
play in the physical, biological and social sciences. For example comparative 
statics, as in Paul Samuelson's Foundations, studies economic equilibrium 
prices p satisfying ƒ (/?, /A) = 0 where for each parameter value fap-^fip, M) 
is a map from R" to Rn. The problem is: how does a solution vary with /i, 
even for small /x. Since economic theory has shown pretty clearly that the 
excess demand (in some form) ƒ is not derived from any potential function, 
CT itself is not relevant. On the other hand, the problem naturally fits into 
the theory of singularities of maps. 

We end this review by a remark on history. Catastrophe theorists often 
speak as if CT (or Thorn's work) was the first important or systematic (CT is 
"systematic" as a certain study of singularities, but not as a study of 
discontinuous phenomena) study of discontinuous phenomena via calculus 
mathematics. My view is quite the contrary and in fact I feel the Hopf 
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bifurcation (1942) for example lies deeper than CT. The Hopf theory shows 
how a stable equilibrium bifurcates to a stable oscillation in ordinary 
differential equations. Moreover, there is the reference Theory of oscillations 
by Andronov and Chaiken, 1937, with English translation in 1949 published 
by the Princeton University Press which is never referred by Thorn or 
Zeeman. This book besides giving an early account of structural stability, 
gives a good account of dynamical systems in two variables with explicit 
development of discontinuous phenomena, quite close to Zeeman's use of the 
cusp catastrophe. Examples from physics and electrical engineering are 
studied in some depth. 
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Bornologies and functional analysis, by Henri Hogbe-Nlend, Mathematics 
Studies no. 26, North-Holland, Amsterdam, New York, Oxford, 1977, 
xii + 144 pp., $19.50. 

The author states in his introduction that functional analysis is analysis 
over infinite dimensional spaces. This is a fact. But concrete infinite dimen­
sional spaces, e.g. function spaces, are more important than the reader would 
gather from the book. 

Hard functional analysts evaluate and prove a priori inequalities. Their 
topologies are related to the problems they study, to the inequalities they 
prove. The solution of a concrete problem is the main emphasis. If this 
solution involves the consideration of a half dozen topologies on a given 
space, well it does, but the problem is solved. 

The soft functional analyst does not find these proofs elegant. Some proofs 
may even be "clumsy", the hypotheses being too strong. Of course, the 
examples to which the "better" proof applies are fairly artificial, but that does 
not affect the general principle. Elsewhere, a "main theorem" can be proved, 
its proof involves one single topology or convergence on the space. The other 
topologies only serve to bridge the gap between the main result and the 
applications. The hard functional analyst does not appreciate the progress 
since the main result is only justified by its applications. 

Bornology is a chapter of soft functional analysis. 
Locally convex space theory is a well established subject. We all know a 

half dozen or more classes of examples of locally convex spaces. These 
examples put the flesh on the skeleton when we, or our students, read a 
textbook on locally convex space theory. 

Bornology is not as well established. The reader of a text on bornology may 
not know how it can be used to help the hard analyst. It is the author's 
responsibility to lead his reader to the applications. These applications are the 
final test in judging the value of a soft analytic theory. 

In this book, the author places more emphasis on the easy parts of 
bornology, or in the chapters where functional analysts used bornologies 
before they were invented than on the chapters where the consideration of 
bornologies really brings something to functional analysis. A senior 


