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short discussion of normed vector lattices leads to the Lp spaces and the 
abstract L- and M-spaces. Kakutani's concrete representation of L-spaces is 
given, but strangely enough the corresponding one for M-spaces does not 
appear. 

A novel topic appears in Chapter 7-linear spaces with norm-functions that 
are vector-lattice valued. The results are reminiscent of those in vector-valued 
function spaces. In particular, integral representations are obtained for 
bounded linear operators on the space of continuous vector-valued functions 
and on the space of (Bochner) integrable vector-valued functions (where the 
domain of these functions is a compact interval on the real line). The 
Hellinger integral is developed for this last purpose. Finally, integration of 
vector-valued functions with respect to vector measures (via a bilinear map) is 
presented. 

The last chapter " . . . gives a brief exposition of the manner in which the 
theory of ordered vector spaces can be used in various branches of mathemat
ics." These include operator equations in various contexts, operator exten
sions, the spectral theorem for selfadjoint operators on Hubert space, and 
fixed points for positive contractions. 

The book is well organized and clearly written. The level of exposition is 
detailed, yet important material is easily accessible (if one already knows 
what's important-there are no real indications of the high points). Each 
chapter ends with bibliographic notes which reference and complement the 
text material. The biggest drawback of the book is that there are no exercises 
or problems whatever, and very few examples. In fact, the whole circle of 
motivating examples available in Orlicz spaces, Banach function spaces, 
normed Köthe spaces is not mentioned at all. In addition, with the exception 
of work by the author, the bibliography stops at 1970 and omits the three 
major recent books on the subject, viz., G. Jameson's Ordered linear spaces 
(1970), A. L. Peressini's Ordered topological vector spaces (1967) and the first 
volume of the very substantial and important Riesz spaces (1971) by W. A. J. 
Luxemburg and A. C. Zaanen. 

Nonetheless, the book includes a good selection of material organized in a 
usable fashion and would make a good reference and text, if properly 
supplemented. 

NEIL E. GRETSKY 

BULLETIN (New Series^ OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 1, Number 2, March 1979 
© 1979 American Mathematical Society 
0002-9904/79/0000-0102/$01.75 

Subharmonic functions, by W. K. Hayman, and the late P. B. Kennedy, Vol. I, 
Academic Press, London, New York, San Francisco, 1976, xvii + 284 pp., 
$25.50. 

Subharmonic functions have been around for a long time, although not 
known by that name originally, and have played a central role in the 
development of mathematics. The Newton and Coulomb inverse square laws 
for gravitational and electromagnetic forces, respectively, made this role 
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inevitable. These laws were used to define potential functions representing the 
potential energy of a unit mass or charge at a point of three dimensional 
Euclidean space due to a nonnegative mass or charge distribution on or 
within a closed surface not containing the point. The negatives of such 
functions are now known as subharmonic functions. 

During the initial period of development, up to the middle of the nine
teenth century, potential theory was more physics than mathematics and 
reasonable physical arguments were used. Near the end of the eighteenth 
century, Laplace had shown that a potential function satisfies a partial 
differential equation, which now bears his name, at all points outside the 
support of the mass distribution, and, around 1820, Poisson found a repre
sentation of a function satisfying Laplace's equation on a neighborhood of a 
closed ball in terms of an integral of the function on the boundary of the ball, 
the familiar Poisson integral formula. Between 1820 and 1830, both G. Green 
and K. F. Gauss investigated the problem of determining a potential function 
which is constant within and on a closed surface, satisfies Laplace's equation 
at all points outside the surface, and, if a boundary condition corresponding 
to a grounded conductor is imposed, within a second surface. Green ap
proached the problem by constructing a kernel, the construction of which 
amounted to showing that a prescribed function on a closed surface could be 
extended to the interior of the surface and satisfies Laplace's equation 
therein. The kernel constructed in this way has since become known as "the 
Green function" or "Green's function" (or even "the Green's function" by 
some). Green had no doubts about the existence of such a kernel because of 
the physical situation. Gauss proceeded somewhat differently by arguing that 
the sought for potential function was the potential energy of an equilibrium 
distribution on the surface and must minimize a functional, now known as 
Gauss' integral, of mass distributions. Gauss too had no doubts about the 
existence of such an equilibrium distribution. As an aside, it was Gauss who 
introduced the logarithmic potential in connection with Laplace's equation 
for planar regions. 

By the middle of the nineteenth century, serious questions had been raised 
about the validity of the physical arguments used by Green, Gauss, and 
others, principally by K. Weierstrass who showed that the type of variational 
argument used by Gauss need not be valid. The problem of showing that a 
continuous function on a closed surface has a continuous extension to the 
interior of the surface which satisfies Laplace's equation therein had become 
known as the Dirichlet problem. It was in this period that B. Riemann 
introduced a variational principle, known as the Dirichlet principle, according 
to which the solution of the Dirichlet problem is the function on a prescribed 
region which minimizes the Dirichlet or energy integral subject to the condi
tion that the function takes on prescribed boundary values. Riemann re
peated the errors of Green and Gauss but in a different formulation. By 1870, 
mathematicians had four closely related problems on their hands dealing with 
the Dirichlet problem, the equilibrium distribution, the Green function, and 
the Dirichlet principle. An interesting account of the early history of potential 
theory can be found in [2]. O. D. Kellogg's book [1] also contains much 
interesting history. 
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During the last two decades of the nineteenth century, the Dirichlet 
problem was shown to be solvable, first for regions with sufficiently smooth 
boundaries by Carl Neumann, then for special regions by H. A. Schwarz 
using the "alternating method" which bears his name, and then by H. 
Poincaré for regions having the property that each boundary point lies on a 
sphere which does not contain any interior points of the region (according to 
Monna [2], Poincaré gave the name "harmonic" to functions satisfying 
Laplace's equation). Shortly after the turn of the century, D. Hilbert 
succeeded in justifying the Dirichlet-Riemann principle for sufficiently nice 
regions and boundary functions and W. F. Osgood proved the existence of 
the Green function for fairly general simply connected planar regions. 
Although the contributions of Neumann, Schwarz and Poincaré established 
the solvability of Dirichlet's problem for some regions, it was not until 1911 
that Zaremba gave the first example of a region for which Dirichlet's problem 
is not solvable, namely a punctured disk in the plane with a boundary 
function equal to 1 at the deleted point and zero on the circumference. In 
1913, H. Lebesgue constructed a counterexample in three dimensions. Le-
besgue's example simultaneously showed that the Dirichlet problem is not 
solvable and that the physical arguments used by Green were not valid. In 
1915, G. H. Hardy proved that the logarithm of the modulus of an analytic 
function satisfies a subaveraging principle according to which its value at a 
point is dominated by its average over the boundary of a closed disk centered 
at the point and contained in the domain of the function; this result was the 
forerunner of the results in the book under review. O. Perron in 1923 and N. 
Wiener in 1924 each introduced new methods of solving the Dirichlet 
problem which in effect modified the Dirichlet problem by associating with 
each boundary function a related harmonic function; the methods were 
equally applicable to discontinuous boundary functions. As a result, a new 
problem arose in showing that the harmonic function so constructed has the 
proper limit at points of the boundary. Using the concept of capacity, which 
was introduced into mathematics by N. Wiener for compact sets, G. C. Evans 
showed in the thirties that the harmonic function so constructed had the 
correct limiting values at continuity points of the boundary function with the 
possible exception of a set of outer capacity zero. But new concepts lead to 
new problems; capacities of compact sets lead to inner and outer capacities 
for arbitrary sets and to the question of what sets are capacitable (that is, 
have equal inner and outer capacities). 

The use of the term "subharmonic function" commenced in 1926 when R. 
Riesz defined a real-valued function on an open set to be subharmonic if it 
does not take on the value + oo, is upper semicontinuous, and satisfies the 
subaveraging principle. Among the examples of subharmonic functions given 
by Riesz are the functions log) f(z)\ where ƒ is analytic. 

The thirties brought about the final resolution of many of the classical 
problems in potential theory. In 1935, O. Frostman justified the existence of a 
measure minimizing Gauss' integral. In 1933, P. J. Myrberg characterized 
those regions having a Green function as those supporting a nonconstant 
positive superharmonic function or, alternatively, as those for which the 
complement is not the set of infinities of a nonconstant superharmonic 
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function. Also in the thirties the Dirichlet principle was put on a sound basis 
by Zaremba and Nikodym with subsequent improvements made by Brelot, 
Weyl, and Deny. A general theory of capacities was developed by G. 
Choquet in 1954 in which it was established that each analytic set is 
capacitable. An important new step was taken in 1956 when M. Brelot 
recognized that a theory of harmonic functions could be built on just a few 
properties, thereby freeing potential theory from a particular partial differen
tial equation, Laplace's equation, and making most of the previously devel
oped theory applicable to elliptic partial differential equations. This axiomati-
zation of potential theory was soon followed by an axiomatization of solu
tions of the heat equation by H. Bauer. 

Most of the above developments are included in the book under review 
with most illustrative examples coming from complex function theory. The 
first and last thirds of the book cover most of the standard topics in potential 
theory, the Green function, the Poisson integral formula, the maximum 
principle, the Dirichlet problem, capacities, and negligible sets. The middle 
third distinguishes this book from other potential theory books in that it deals 
mostly with the growth of subharmonic functions at infinity. This topic is an 
outgrowth of work on the particular subharmonic functions log| f(z)\ by R. 
Nevanlinna, M. Heins, L. V. Ahlfors, and others since 1929 and falls under 
the rubric of Nevanlinna theory. The basis of this theory is found in F. Riesz' 
1926 paper in which it is proved that if u is subharmonic on Rn and E is an 
open set with compact closure, then there is a unique Borel measure [i on Rn 

such that u can be decomposed as the sum of the potential of /x and a 
harmonic function on E. The growth of u at infinity is investigated by 
comparing the supremum of u on a sphere of radius r and center at the origin 
with the average of u+ over the same sphere, by comparing the /x measures of 
balls of radius less than or equal to r with the supremum of u over the sphere 
of radius r, and by comparing the average of u~ with the average of u+ over 
a sphere of radius r. Such comparisons were extensively studied in the thirties 
in the log| f(z)\ case and the results of these studies have been extended to 
subharmonic functions on Rn by the authors, B. Dahlberg, and several others. 
Considerable attention is also given to generalizations of a classical theorem 
of Iverson which states that if f(z) is a nonconstant entire function, then 
f(z) -» oo as z -> oo along some path. 

Professor Hayman states in Acknowledgements that he hopes the book will 
serve as a memorial to his friend and former student Professor P. B. Kennedy 
who died in 1967. The book is thorough, well written, and will surely serve as 
a fitting memorial. 
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