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Faden goes on to apply these tools to general problems of constrained and 
unconstrained optimization. He presents some results on existence and 
uniqueness of optimal solutions, and a number of variations on "shadow-
price" conditions to characterize constrained optima. 

The analytical tools described and developed in the first third of the book 
are used to analyze various problems of spatial economics in the latter two 
thirds of the book. There are discussions of the real estate market, the 
transportation and transhipment problems, several variants on the von 
Thünen system mentioned earlier in this review, several models of industrial 
location, and discussions of a number of other topics in spatial economics. 
These models will no doubt stimulate some fruitful interaction between 
measure theorists and spatial economists; perhaps the intersection of these 
two disciplines may yet be of positive measure! 
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Obstruction theory on homotopy classification of maps, by Hans J. Baues, 
Lecture Notes in Math., vol. 628, Springer-Verlag, Berlin, Heidelberg, New 
York, 1977, xi + 387 pp. 

In the beginning was the word, and the word was homology. The great 
breakthrough in the successful attempt to apply algebraic methods in topol
ogy was the discovery of the homology groups and the proof of their 
topological invariance. Before the homology groups were explicitly described 
we had the idea of the homology class of a cycle on a manifold or, more 
generally, a polyhedron, but the description of the collection of homology 
classes was arithmetical rather than algebraic. That is to say, the great 
pioneers spoke of Betti numbers and torsion coefficients. It is generally 
supposed that Emmy Noether was responsible for observing that in fact the 
homology classes of cycles form an abelian group and that the Betti numbers 
and torsion coefficients were simply the invariants of finitely generated 
homology groups. The topological invariance of the homology groups is a 
truly wonderful result. We define these groups in terms of a very specific and 
arbitrary combinatorial structure on the topological space and then prove 
that they are in fact independent of that structure. 

Thus algebraic topology was born. Subsequently came the cohomology 
groups. At first the view was taken that the combinatorial structure on the 
space gave rise to chain groups and that there were two operators on these 
chain groups, the boundary operator, or lower boundary operator as it was 
sometimes called, and the coboundary operator, or upper boundary operator 
as it was sometimes called. Subsequently it was realized that this was not a 
good point of view. One should exploit the natural duality to introduce not 
only chain groups but cochain groups and then one obtained cohomology 
groups from the cochain groups by a method entirely analogous to that 
whereby one obtained homology groups from the chain groups. This point of 
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view, so obvious to us today, took a long time to establish itself because the 
early pioneers tended to think exclusively in geometric terms. It was thus very 
easy for them to imagine a chain on a manifold, which they could think of as 
being made up out of combinatorial pieces of the manifold, taken with 
certain multiplicities; but it was difficult for them to think of a cochain, 
which is a function defined on the cells of the manifold, with values in some 
abelian group, called the coefficient group. Thus a cochain is very different 
from a chain, although when there are only finitely many simplexes in a given 
dimension (and we use the same coefficient group in both cases, for example 
the group of integers), then there is an unnatural isomorphism between the 
chain group and the cochain group in that dimension. 

This question of 'naturality' is what ultimately justifies the modern 
viewpoint about homology and cohomology. First explicitly formulated by 
Eilenberg and Mac Lane in 1945, the functorial approach is now so well 
established that newcomers to topology scarcely realize that it had to be 
consciously chosen and by no means commanded universal assent at its 
inception. Now we understand that homology provides a 'map' of topology 
into algebra, in that spaces X are replaced by (graded) abelian groups H*X 
and continuous functions ƒ: X -» Y are replaced by homomorphisms HJ*: 
H^X -» H+ Y; and cohomology provides a 'reverse' or 'contravariant' map, in 
that spaces are replaced by abelian groups H*X and continuous functions/: 
X -* Y by homomorphisms H*f: H*Y-> H*X. These 'maps' preserve iden
tity transformations and respect composition in the sense that, if also g: 
Y^Z, then HJigf) = (H*g)(HJ), H*{gf) = H*(f)H*(g). 

But we are anticipating and should return to our outline of the evolution of 
algebraic topology. In the middle 1930s came two major algebraic develop
ments. One was the realization that the cohomology structure was richer than 
simply that of a graded abelian group. There was a natural ring structure 
which was commutative in the graded sense. It was easy to find examples of 
topological spaces which were not distinguished by their cohomology groups 
but which were distinguished by their cohomology rings. A second crucial 
advance at this time was the invention by Hurewicz1 of the homotopy groups. 
These are generalizations of the fundamental group; the nth homotopy group, 
iTnX, of the space X is the set of classes of maps of the «-sphere Sn into X, 
endowed with a natural group structure. However, for n > 2, the homotopy 
groups are all commutative, whereas, if n = 1, we have the fundamental 
group, which need not be commutative. 

Major advances in algebraic topology before the Second World War were 
made by Henry Whitehead. Among his contributions were his insistence on 
the importance of homotopy type rather than homeomorphism. Two spaces X 
and Y are said to be of the same homotopy type if there exist maps/: X -* Y 
and g: Y -> X such that the composite gf is homotopic to the identity on X 
and the composite fg is homotopic to the identity on Y. The homology 
groups, the cohomology ring, and the homotopy groups are all not only 
topological invariants but homotopy invariants. A second major contribution 

lrrhe invention should, strictly speaking, be credited to Cech; but he found no application for 
them, so that they lay dormant for some four years. 
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by Henry Whitehead was his invention of the so-called CW-complexes. These 
are topological spaces endowed with a combinatorial structure which, while it 
is much more general than the structure of a simplicial complex, is neverthe
less usually much easier to handle. In particular one can usually get by with a 
very few cells in a CW-complex where one would have to have a large 
number of simplexes in a simplicial complex built on the same topological 
space. Thus, for example, the most natural simplicial triangulation of the 
torus requires 9 O-simplexes, 27 1-simplexes and 18 2-simplexes; whereas the 
natural CW-structure requires 1 0-cell, 2 1-cells and 1 2-cells. 

A third major contribution of Henry Whitehead was a certain binary 
operation, now always called the Whitehead product. This is an operation on 
pairs of elements of the homotopy groups which is in many respects analo
gous to the product structure in cohomology. Indeed it can be said that the 
Whitehead product enables one to define a Lie ring structure in homotopy. 
The Whitehead product is homotopy invariant. 

Finally, in this incomplete list of his contributions, let us mention the exact 
homotopy sequence. Not only was this a major discovery in itself but it 
heralded a far more sophisticated approach to the study of algebraic in
variants of homotopy type. This approach was taken much further after the 
war, principally by Steenrod and his successors who developed a systematic 
theory of cohomology operations, that is to say, operations on the cohomology 
of a space which are homotopy invariant, and by Serre, who showed how to 
exploit spectral sequences in homotopy theory, a massive generalization of 
the notion of an exact sequence. To be sure there are also homotopy opera
tions, but these, at any rate initially, did not seem anything like so rich. One 
obvious reason for this was that we had arbitrary coefficients for the 
cohomology groups (in particular, the rationals and the integers modulo/?, for 
any prime p) whereas it was only somewhat later that coefficients were 
introduced into the homotopy groups. 

The cohomology operations-for example, the Steenrod squares and the 
Steenrod reduced powers-and the homotopy operations-for example, the 
Whitehead product-are universally defined operations, in the sense that they 
are defined on any cohomology classes or «-tuple of cohomology classes of 
the required kind, or on any homotopy elements or «-tuple of homotopy 
elements. As algebraic topology became more sophisticated, and in response 
to ever deeper questions, higher order cohomology operations were studied. 
These are operations which are only partially defined and which take values 
only modulo a certain indeterminacy. A notable triumph in this regard was 
Adams' celebrated first proof of the nonexistence of elements of Hopf 
invariant one in the homotopy group 7T2n-\(Sn) f° r « ^ 2,4 or 8. 

This whole apparatus of algebraic topology may then be used to study 
obstruction problems. The pioneer here was Eilenberg who in 1940 showed 
how to express the obstruction to the extension of a map by means of 
cocycles and cohomology classes. As Steenrod pointed out, so many problems 
in mathematics may be presented as extension problems or lifting problems. 
Thus for example if A" is a topological space and A is a subspace of X, and if 
we have a map/: A -» Y, it is natural to ask if we can extend ƒ to the whole of 
X or, at any rate, beyond A. In a different context, given a homomorphism of 
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groups <p: G-* H and a surjective homomorphism \p: K-> H, can <p be lifted 
into K1 

In topology, obstruction problems generally appear as extension problems, 
lifting problems, cross-section problems (a specific lifting problem, where the 
projection of a fiber bundle is the surjection map in question), or as compres
sion problems. The technique for studying these problems is then to employ 
the algebraic invariants of homotopy type such as have been described above. 
Since the obstruction problems fall into two dual classes it is natural that the 
obstructions are in certain cases formulated as being elements of cohomology 
groups with coefficients in a homotopy group and, in the dual cases, as 
elements of homotopy groups with coefficients in a cohomology group. We 
may represent the dual problems in their simplest form by the diagrams 

-* B A - - -» B 

\ ?* X K 

C C 
Given/, g, does there exist h such that ƒ = hgl Dually, given/, h, does there 
exist g such that ƒ = hgl The extension problem takes the first form, the 
lifting problem and the compression problem take the second, dual form. Of 
course, we may refine our questions. In the first form, we may only ask that 
hg be homotopic to ƒ; we may seek a classification of all possible homotopy 
classes h. We may relativize the problem by replacing the spaces A; B; C in 
our diagram by pairs A,A0; B, B0; C, C0, consisting of a space and a 
(suitable) subspace. 

The functorial approach makes it plain how we can use homology or 
cohomology to study these problems. In its crudest form, we may apply 
homology to the first question, to translate it into a question in abelian group 
theory. For if h exists such that hg is homotopic to ƒ, then there must exist a 
homomorphism <p such that <p(H#g) = //*ƒ, 

namely, <p = H^h. Thus if no such <p exists, no such h exists. This elementary 
conclusion is enough to show that a ball K"+1 may not be retracted onto its 
boundary Sn. For such a retraction h would give rise to a commutative 
diagram 

HASn H*1 >HVn + l 

idN 

HJn 
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where i: S" C Vn+l is the inclusion, and if we look at homology in dimen
sion n, this becomes the (hypothetical!) commutative diagram 

Z • () 

> \ / 
Z 

an obvious absurdity. Thus no such h exists; from this the Brouwer fix-point 
theorem is an immediate consequence. 

Of course such crude techniques are not usually powerful enough. That is 
why we need an obstruction theory of considerable sophistication-hence 
Baues' text. In this sophisticated theory we attempt to extend through several 
stages (or lift through several stages), the procedure leading to higher order 
obstructions, expressed by means of higher order operations. 

Baues has certainly given us the most systematic and comprehensive 
treatment of obstruction theory that has ever been attempted. Not only are 
the obstructions described and related to the appropriate cohomology or 
homotopy operations but also, where the obstructions may be overcome, 
Baues gives a complete classification of the classes of extensions or liftings 
that arise. The duality, as we have said, is explicitly and firmly exploited. 
Relativization is introduced to the extent that it is appropriate in order to 
achieve the most useful generality. There are numerous examples and 
illuminating applications. 

Indeed some might say that Baues has told us more about obstruction 
theory than we really want to know. Certainly it may very well be argued that 
he should have exploited the duality even more and thereby somewhat 
shortened the text. The inevitability of the development should scarcely be 
regarded as a fault. Naturally in such a systematic treatment of its theme 
there are no real surprises-until one comes to some of the best applications. 
Baues leaves the reader in no doubt that this particular branch of algebraic 
topology has come of age. 

The reader should be warned that there are numerous misprints and some 
disturbing solecisms; among the latter there may be those due to the fact that 
the author is not writing in his first language. We select, as examples of the 
former, three which are particularly troublesome, since they come so near the 
beginning of the text. There is the misprint on p. 1 where we have ƒ: X -*Y 
instead of ƒ: Y -* X; on p. 3 where a pullback diagram is given and is 
meticulously described as a pushout diagram; and on p. 66 where there is an 
important reference to item (1.2.30) although no such item exists. Further, it 
is misleading to state very emphatically on p. 1 that "from now on all spaces 
are pointed" and to follow this with four pages on which the spaces are not 
pointed. A typically troublesome phrase is that on p. 51, "Analogous state
ments hold for the following operation." It is not clear what statements are 
being provided with implicit analogies, nor precisely what operation is in 
question. The language difficulty is doubtless responsible for the author 
using, on p. 4, the phrase "Cocartesian and cartesian diagrams can be 
combined," when he means "Cocartesian diagrams can be combined and so 
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too can cartesian diagrams." The reader will also have difficulty in many 
places where letters which should be adorned with bars or tildes (thus, H or 
C) appear without their adornments, and thus look as if they mean something 
else. 

This brief sample of small errors of typography and presentation are given 
to warn the reader that he will need to study the text very carefully, not only 
for its mathematical content. They are not intended to disparage the un
doubted value of this book to all those concerned with this important branch 
of algebraic topology. 
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Harmonic analysis on real reductive groups, by V. S. Varadarajan, Lecture 
Notes in Math., vol. 576, Springer-Verlag, Berlin, Heidelberg, New York, 
1977, 521 pp., $17.20. 

The study of harmonic analysis on real semisimple Lie groups has pro
ceeded in three major currents. One of these has been via the study of more 
general locally compact groups. There are, for example, general results about 
character theory, induced representations, and the Plancherel theorem. Good 
references for this work are the books of Dixmier and Mackey [3], [8]. 

In the other extreme, there have been studies of specific groups, most 
frequently SL(2, R)9 the group of 2 X 2 real matrices with determinant one. 
Although this is the simplest possible example of a semisimple real Lie group, 
studies of S£(2, R), two of the earliest being papers by E. Wigner in 1939 and 
V. Bargmann in 1947, provided invaluable inspiration for the general theory 
[2], [13]. 

Finally, there has been the study of real semisimple Lie groups in general. 
The pioneering work in this area is due almost entirely to Harish-Chandra. 
This work exploits the rich structure theory of semisimple groups and the 
connections between analysis on these groups and the abelian Fourier analy
sis on their Lie algebras and Cartan subgroups. 

The building blocks of harmonic analysis are irreducible unitary repre
sentations. The set G of equivalence classes of irreducible (continuous) 
representations of a locally compact group G is called the unitary dual of G. 
For ir E G and ƒ E L\G\ the operator-valued Fourier transform of ƒ is 
given by ir(f) = ƒG f(x)ir(x) dx, where dx is Haar measure on G. The 
scalar-valued Fourier transform is /(TT) = trace ir(ƒ), if w(ƒ) has a well-de
fined trace as an operator on the representation space. 

A Plancherel measure for G is a positive measure on G such that for 
ƒ E L\G) n L\G), | K / ) | | is finite for jLt-almost all m E G, and 
f G I f(x)\2dx = fô\\w(f)\\\2Mv)- Here || • || denotes the Hilbert-Schmidt norm. 
PlancherePs theorem says that for a large class of locally compact groups 
(including compact and semisimple Lie groups, see [3]), Plancherel measure 
exists on G, and is unique once a Haar measure dx on G is fixed. An easy 


