
524 BOOK REVIEWS 

of interest to a wide variety of specialists in applied mathematics and 
engineering and should be on the bookshelf of anyone interested in ill posed 
problems. There are numerous examples and illustrations. The translator has 
taken pains to insure that the English reads smoothly. 
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What mathematical discovery has provoked recent articles in Scientific 
American, Nature, Newsweek, Science, The New York Times, The Times 
Higher Education Supplement, U Express and the New York Review of Books! 
What current theory now ranks only behind the weather and old movies as a 
subject of cocktail conversation between mathematicians and nonmathema-
ticians? Is there any content to this theory which has been described in 
Science as an emperor without clothes? Has all the notoriety been public 
relations-beginning with the creator's brilliant choice of name? This, for 
instance, has led The New York Times to blunder on its front page article 
with the headline "Experts Debate the Prediction of Disasters." In short, is 
this theory really-as Newsweek described it-the most important mathematical 
advance since Newton's invention of the calculus? 

The answer to the last question is simply no; however, catastrophe theory 
does have merit both in mathematics and in applications. How, then does one 
find out about its successes and why is there a controversy? The answers to 
these questions are related, but before discussing them one point should be 
made. To my knowledge no one has suggested that the mathematics behind 
catastrophe theory is anything less than superb. 
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The mathematics-in its narrowest interpretation-is the study of the qualita
tive nature of isolated singularities of C00 functions from Rn to R defined on 
some (small) neighborhood of the origin. By "qualitative" one means up to a 
change of coordinates in the domain and the addition of a scalar in the range. 
The major accomplishments are the unfolding theorem which allows the 
qualitative enumeration of all small perturbations of the original function and 
the classification theorem which gives a first step-through the notion of 
codimension-towards the determination of just how complicated a given 
singularity is. This body of mathematics is now called elementary catastrophe 
theory. The mathematics is profound as befits the mathematicians mainly 
responsible for the theory: Morse, Whitney, Thorn, Malgrange, Mather and 
Arnold, to name just a few. 

It is not difficult to understand why the "real world" press has been 
interested in catastrophe theory. The list of topics to which elementary 
catastrophe theory has been applied-with no judgement made on the quality 
of these applications-is truly amazing: stock markets, prison riots, Darwin's 
theory, anorexia nervosa, love, the twinkling of stars, the design of bridges, 
nerve impulses and the division of cells. Although mathematical discussion in 
the press is rare, it would be strange indeed not to report on a mathematical 
theory which gave unity to the above phenomena. The controversy is-in 
part-whether or not the applications have any merit. 

Another aspect of the controversy over the usefulness of catastrophe theory 
is what should be called catastrophe theory. The critics maintain that 
catastrophe theory should be considered as the mathematics and applications 
of elementary catastrophe theory restricted to the seven simplest singularities. 
Some critics seem to argue further that this term should only be applied to 
those applications in the social sciences and biology [12]. On the other hand, 
some of the supporters, including Thorn himself, view the mathematical 
extent of catastrophe theory in such generalities that they go beyond what is 
proven rigorously into areas which are vague and-as some suggest-mystical. 

This dichotomy is unfortunate and leads to an unstable situation. The 
critics have a tendency to label applications in the social sciences and biology 
as "applied catastrophe theory" while reserving the term "singularity theory" 
for those applications which are based on sound mathematical models and 
are usually found in physics and engineering. Another result is that criticisms 
of applications to the "soft sciences" are interpreted to mean criticisms of all 
uses of catastrophe theory, which is both misleading and unfair to those who 
have made "solid" use of catastrophe theory methods. 

One reason for this divergence of opinion has been the lack of availability 
of information about the hard applications of catastrophe theory. So we 
return to the question, "How does one find out about catastrophe theory's 
successes?" An obvious suggestion is to read some of the numerous expos
itory articles-for example [20], [4], [13], [3]-describing the mathematics and 
some of the applications. Even the most visible critic [14] as well as this 
reviewer [5] have written such articles. Unfortunately surveys are constrained 
by a lack of space to describe the uses of catastrophe theory superficially or 
to describe superficial uses of catastrophe theory. Another suggestion is to 
read Thorn's seminal work [17] or the recently published collection of 



526 BOOK REVIEWS 

Zeeman's papers [21]. However, the first book is about the problems that 
Thorn hoped would be described by catastrophe theory and not about what 
has actually been accomplished while controversy swirls about the second. 
Zeeman deals mainly with applications to the social sciences and biology-at 
least these are the applications which are most often quoted-areas which have 
persistently defied sophisticated mathematical techniques. Thus, a diligent 
person interested in catastrophe theory should read Zeeman and his critics 
[15], but to do only this would lead one to miss entirely what are perhaps the 
most interesting examples of catastrophes. 

It seems to this reviewer that to resolve the question of whether catastrophe 
theory has useful applications, it is not necessary to approve or disparage 
applications of elementary catastrophe theory to the social and biological 
sciences. Instead we may focus on areas where the use of mathematics has a 
successful history and where this new theory claims to have made significant 
progress rather than on areas where even the use of mathematics is in doubt. 
There have been many of this kind of application of catastrophe theory to 
problems in physics and engineering. That most readers of Newsweek should 
not appreciate this fact is not surprising; that most professional mathe
maticians should be similarly ignorant calls for some explanation. As we have 
discussed above, the reasons are twofold. First, there is disagreement as to 
what should be called catastrophe theory. Second, it was until now difficult to 
find a coherent, self-contained reader on catastrophe theory and hard appli
cations. To be such a reader is the purpose of Poston and Stewart's book. It is 
a book whose time has come, which may serve as a basis for redirecting the 
catastrophe theory debate, and if successful will be outdated-in the best 
engineering sense-within a few years. 

Before discussing Poston and Stewart's book I would like to return to the 
question of what is catastrophe theory. Of all the ideas associated with 
elementary catastrophe theory it is the notion of universal unfolding (or 
equivalently, the stability of a parametrized family) which uses new 
mathematics. In particular, it is here that one needs the Malgrange 
Preparation Theorem, easily the deepest and most technical analytic result 
associated with catastrophe theory. Thus, I would like to define catastrophe 
theory to be the study and use of classes of germs of mappings of Rn into Rm 

considered under some equivalence relation (usually given by changes of 
coordinates) for which the unfolding theorem is valid. One should observe 
that all of the theorems which are known in this more general setting are 
proved in a fashion similar to the unfolding theorem of elementary 
catastrophe theory and there is substantial mathematical precedent for group
ing similar theories under a single title. Finally, for those who find the term 
"catastrophe theory" anathema, I suggest the use of "singularity theory." 

Catastrophe theory and its applications divides naturally into two parts: 
theory and practice. The mathematics is presented in a leisurely manner 
rather than in the more usual and terse theorem-proof format. The basic 
theorems are described, but their proofs are mostly just replaced by referen
ces to the literature. As there is now extant an extensive and detailed 
literature this seems a reasonable approach. The authors propose, in the first 
part of their book, to give the reader a working knowledge of elementary 
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catastrophe theory, a knowledge sufficient to understand the subsequent 
examples. It is indeed a curious, though hardly surprising, pedagogical fact 
that the theory is defined and described by those very examples. 

The list of applications fall under the following chapter titles: ship design, 
fluids, optics, elastic structures, thermodynamics, lasers, biology, and social 
modelling. Disregarding the last two subjects-the most controversial-still 
leaves one with a rather ambitious list. The remainder of this review will be 
confined to fluids and elastic structures. These applications should give a 
flavor for the type considered by Poston and Stewart; they also represent 
different kinds of applications, the first showing how the theory may help in 
the analysis of a specific model while the second describes a field where 
catastrophe theory may help to organize the extensive existing knowledge. My 
own prejudice is that work on elastic structures and, more generally, the 
relation between singularity theory and classical bifurcation theory will 
strengthen both theories as well as mute the criticisms that catastrophe theory 
is a theory dealing only with real-valued functions. On the other hand, this 
relationship with bifurcation theory points out the valid criticism that to date 
catastrophe theory is an essentially static theory. There have been attempts by 
Arnold [1] and Takens [16] to use singularity theory for the study of 
dynamical systems but the tangible results so far are not very encouraging. 

The application of elementary catastrophe theory described by Poston and 
Stewart under the title of fluids is work done by Berry and Mackley [2] on 
experimentally finding a measure for how much a given polymer deviates 
from being Newtonian. A non-Newtonian liquid is one where the viscous 
forces at a point in the liquid depend on the history of the liquid at that point. 
The size and geometry of the polymer chains contribute to making a given 
fluid non-Newtonian. Berry and Mackley use this data to study "such points 
of physical interest as molecular relaxation times." It turns out that this 
application depends on a detailed understanding of the geometry of the 
elliptic umbilic catastrophe. 

The models under consideration are two dimensional, time independent (or 
steady) flow; that is, it is assumed that there is a vector field v(x, y) which 
gives the velocity of the fluid particle at (x,y). These assumptions are, of 
course, physically unrealistic in many situations but they are assumptions 
made classically and they give a good approximation to actual flows in 
certain cases. The experiments of Berry and Mackley seem to provide such an 
instance. 

For steady, two-dimensional flow there always exists a stream function <J> 
such that v = (< ,̂ - <j>x). Note that it is through the stream function that 
elementary catastrophe theory enters the analysis. In general, the Navier-
Stokes equations which govern fluid flow are only invariant under changes of 
coordinates which are volume preserving; whereas the theorems of 
elementary catastrophe theory demand equivalences which are given by 
arbitrary C00 coordinate changes. However, differential invariants of the 
flow-for example, the number and type of critical points (or stagnation points) 
of </>-are a fortiori invariants of volume preserving coordinate changes. 

Consider, as an example, "pure shear" flow; that is, <f> = xy. Geometrically 
this flow is a standard hyperbolic flow about a saddle point. G. I. Taylor 
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suggested in 1934 an experimental apparatus known as the four roll mill, 
represented in Figure 1, for generating this flow. Using symmetry and some 
elementary Morse theory one can see why this apparatus should generate 
pure shear flow. By symmetry there is a unique stagnation point at the origin 
and <j> = axy + . . . where a may be shown to be nonzero. Morse theory 
states that <f> is C00 equivalent to pure shear flow so that the hyperbolic 
character of the flow is a necessity. Moreover, the stability of nondegenerate 
critical points under small perturbations indicates that the flow should be 
experimentally realizable and it is. 

FIGURE 1. All roller speeds are equal 

FIGURE 2. All roller speeds are equal 

The experiment considered by Berry and Mackley is the six roll mill 
pictured in Figure 2. Using symmetry and some simple elementary 
catastrophe theory techniques one can see that the flow for the idealized six 
roll mill is the monkey saddle flow presented in Figure 2. In particular the <f> 
for this experiment is C°° equivalent to x3 - 3xy2, the elliptic umbilic. Here 
now is a difference with the four roll mill; this </> is not stable under small 
perturbations. In fact, the unfolding theorem states that three parameters are 
necessary to describe all small perturbations of <J> up to C°° equivalence. 



BOOK REVIEWS 529 

These perturbations may be represented by $ = <J> 4- w(x2 + y2) + uy + zx. 
This simple form for the pertrubation terms allows one to catalogue-using the 
well understood geometry of the elliptic umbilic-all of the way the monkey 
saddle flow can change under small perturbations of </>. This is done graphi
cally by Poston and Stewart and appears on the dust cover of their book. 

Berry and Mackley ask how the unfolding parameters u9 z and w can be 
realized experimentally. First, they let WIy Wu and Wm be independent roller 
speeds for the pairs of rollers I, II and III in Figure 2. As only the ratios of 
these speeds matter, one obtains two independent parameters. The third 
unfolding parameter turns out to measure the deviation of a given fluid from 
being Newtonian. Of course, for a given fluid this parameter is fixed. 
However, Poston and Stewart note that by observing the patterns of the flow 
experimentally as the roller speeds are changed one can use the catalogue of 
possible flow patterns to actually determine the value of this third unfolding 
parameter, thus generating the desired information for the given fluid. 

The chapter on elastic structures shows how to use elementary catastrophe 
theory to analyze a number of (idealized) mechanical structures. Except for 
some work on the von Karman equations describing the buckling of plates, 
there is no claim that the results are new, just that there is a new perspective 
in which to view these problems. To understand the novelty in this approach 
one must understand some of the rudiments of steady-state bifurcation 
theory. 

The basic idea is that one is given an equation (either algebraic, differential 
or integral) depending on a parameter X and denoted symbolically by 

G(JC,X) = 0. (1) 

(Usually G is given as a mapping between Banach spaces but may, for many 
problems, be reduced by some method like that of Lyapunov and Schmidt to 
a finite dimensional problem.) One wants to study how the solution set varies 
with X. Those values of X where two different solution branches xx(X) and 
x2(X) cross are called bifurcation points. A standard classical example is the 
buckling of an object under an applied load X; the values of À where buckling 
occurs are bifurcation points. 

Elementary catastrophe theory does not apply to all such problems, only 
those for which G = dV/dx for some potential function V. However, this is a 
rich class known as conservative problems so that such a restriction is a 
reasonable one. 

Much of classical bifurcation theory rests on knowing a particular solution 
branch, called the trivial solution, and following along that branch until 
bifurcation occurs, thus mimicking a real experiment. A necessary condition 
for branching is that ^G-the Jacobian of G with respect to the x-vari-
ables-be singular. The novelty of the singularity theory approach is to find 
those singular points first and then build the solution set from the knowledge 
of the type of singularity which is present. There are two advantages; a trivial 
solution may not be easily discernible and many singular phenomena do not 
actually include branching but are still in need of description [6]. 

The technical ways which Poston and Stewart suggest that elementary 
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catastrophe theory may be helpful are as follows: 
(1) All too often bifurcation analysis has only considered the varying of 

one parameter. Already in the buckling of an Euler column several parame
ters are necessary to attain all nearby states. The suggestion here is to use the 
unfolding theorem to identify all of the relevant perturbation terms. Care 
must be exercised in this analysis for the answer that one obtains depends 
crucially on the exact nature of the question that is asked. I will say more 
about this point in B below. 

(2) The refined algebraic nature of catastrophe theory calculations may be 
used to analyze problems where there are several x variables (multiple 
eigenvalue problems). This may well be one of the major technical 
contributions of singularity theory to bifurcation theory; however, even these 
refined techniques do not make the calculations easy! The application to the 
von Karman equations alluded to above is a case in point. 

(3) Thompson and Hunt [18] have developed a theory similar to elementary 
catastrophe theory to study imperfection sensitivity-the study of how the 
value of À where buckling occurs varies with some assumed imperfection. It is 
assumed that by applying catastrophe theory techniques one should be able 
to carry out the Thompson-Hunt program for more complicated situations (as 
well as to provide mathematical proofs for their techniques). 

There are several criticisms that one could make of these applications of 
elementary catastrophe theory. 

(A) Even though a given problem may be conservative there is no guaran
tee that perturbations of that problem need be conservative (the wind may be 
blowing). Hence elementary catastrophe theory cannot classify all possible 
perturbations. 

(B) There is a very good reason for considering only one parameter 
bifurcation problems; namely, when performing an experiment one must 
follow a one-dimensional path parametrized by time. If this theory is to be 
predictive, then it must yield information which can be compared to experi
ment. Thus X should be considered separately from the other perturbation 
parameters, a situation not permitted in elementary catastrophe theory. When 
one does this the number of parameters needed for a universal unfolding 
increases, sometimes quite substantially. 

(C) For many physical problems there is a built-in symmetry. For many of 
these problems one is only interested in the symmetry preserving 
perturbations. 

Poston and Stewart are aware of these problems and through various 
examples they show explicitly why such considerations are important. The 
reader should be warned that their suggestion for how to take care of 
criticism (B), namely, by the use of r — s stability theory, is wrong. (One 
should see [7] for a more detailed explanation of why this theory is 
inappropriate for the problem at hand.) Poénaru [9] has an unfolding theory 
which includes symmetry properties of the potential function; however, no 
systematic application of this theory has been attempted to date. 

Since Poston and Stewart wrote their book the criticisms listed above, 
including the necessity of analyzing the potential function V rather than G 
directly, have been confronted by use of yet another of the standard unfold-
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ing theorems from singularity theory-Mather's theorem on contact equiva
lence. Now there exists a solid relationship between classical bifurcation 
theory and singularity theory [7], [8], [10], [11], [5]. 

I should like to end this review with some comments on the tone of 
Catastrophe theory and its applications. The authors are enthusiastic and there 
is no muting their enthusiasm. However, unlike in some other works on the 
subject, there is a welcome lack of pretension and an honest effort to explain 
how and why elementary catastrophe theory is useful. Great pains are taken 
to justify the catastrophe theory formalism and this is most desirable, given 
the general controversy. Finally, there is a lively wit which is sprinkled 
throughout; one of my favorites being: 

"As these examples illustrate, the distinction is between 
elastic and plastic behavior and not between materials. 
Moreover it is far from absolute: there are materials that can 
be deformed and left lying, apparently changed in shape, but 
a day later (like the mind of a bureaucrat you thought you 
had convinced of something) appear as if they had never 
been disturbed, having reverted slowly but inexorably to the 
original position." 

Catastrophe theory suffered through a period of initial euphoria when 
mathematicians were curious and nonmathematicians overly impressed by 
what was claimed. More recently, there has been a backlash against those 
extravagances and doubt has been cast on every conceivable use of this 
theory. It is my hope that the collective wisdom regarding catastrophe theory 
will prove elastic. 
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Innovation processes, by Yuriy A. Rozanov, John Wiley & Sons, New York, 
Toronto, London, and Sydney, 1977, vii + 136 pp., $14.50. 

Complex valued random variables £> s E I, with finite second moments 
being simply Z^-functions on a probability space, problems involving only the 
second moments are naturally set in the corresponding Hilbert space, the 
expectation £[4^/] = B(s, i) serving as the inner product. Throughout this 
review all random variables will be assumed to have second moments, and 
also, for convenience only, the first moment will be taken to be zero. The 
parameter set I will be taken to be the interval (ex, /?) on the line, where a or 
/? may be infinite. B(s9 i) is the covariance function. Then (£,, s E I) is a 
stochastic process; or a curve in Hilbert space. For t E I, let Ht(Q be the 
closed linear hull of {£s: a < s < /} , let H(£) be the closure of the union of 
the #,(£)> t E I, and let Pt be the operator of orthogonal projection onto 
ƒƒ,(£). The theme of Rozanov's book is the temporal evolution of the family 
of nondecreasing subspaces (//,(£)> t E ƒ). This leads to questions in the 
geometry of Hilbert space naturally motivated by probabilistic consi
derations: {£/. a < s < t) represents the observations available up to time t, 
and for f < u < /?, P^ is the best linear predictor (in the sense of mean 
square error) of £, in terms of the past up to time /. The process (£„ t E ƒ), 
will be assumed left-continuous, and this implies the same property for the 
family (Hn t E I) and also the separability of #(£)• For simplicity £, is taken 
to be complex-valued, but much recent work in the area has been devoted to 
vector space valued cases, and this is also the setting of Rozanov's book. 

The notion of an innovations process associated with (£„ / E ƒ) is due to 
Cramer [1], [2], [3]; for a related development see Hida [7]. It can be shown 
that there exists a finite or infinite sequence £(l) of elements of H(Q so that 
on putting £/'> = PtÇ® the following conditions hold: (i) Ht(ÇW)±Ht(Ç

U)) 
for i^j; (ii) setting Ft

{ï) = E[\Çt®\2]9 Fu) is absolutely continuous with 
respect to F(/> forj > i; ƒƒ,(£) = 2 , © #,(£,)• Of course each (f,(/), t E ƒ) is a 
process with orthogonal increments. The length of the sequence f(/) is called 
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