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Complex valued random variables £> s E I, with finite second moments 
being simply Z^-functions on a probability space, problems involving only the 
second moments are naturally set in the corresponding Hilbert space, the 
expectation £[4^/] = B(s, i) serving as the inner product. Throughout this 
review all random variables will be assumed to have second moments, and 
also, for convenience only, the first moment will be taken to be zero. The 
parameter set I will be taken to be the interval (ex, /?) on the line, where a or 
/? may be infinite. B(s9 i) is the covariance function. Then (£,, s E I) is a 
stochastic process; or a curve in Hilbert space. For t E I, let Ht(Q be the 
closed linear hull of {£s: a < s < /} , let H(£) be the closure of the union of 
the #,(£)> t E I, and let Pt be the operator of orthogonal projection onto 
ƒƒ,(£). The theme of Rozanov's book is the temporal evolution of the family 
of nondecreasing subspaces (//,(£)> t E ƒ). This leads to questions in the 
geometry of Hilbert space naturally motivated by probabilistic consi­
derations: {£/. a < s < t) represents the observations available up to time t, 
and for f < u < /?, P^ is the best linear predictor (in the sense of mean 
square error) of £, in terms of the past up to time /. The process (£„ t E ƒ), 
will be assumed left-continuous, and this implies the same property for the 
family (Hn t E I) and also the separability of #(£)• For simplicity £, is taken 
to be complex-valued, but much recent work in the area has been devoted to 
vector space valued cases, and this is also the setting of Rozanov's book. 

The notion of an innovations process associated with (£„ / E ƒ) is due to 
Cramer [1], [2], [3]; for a related development see Hida [7]. It can be shown 
that there exists a finite or infinite sequence £(l) of elements of H(Q so that 
on putting £/'> = PtÇ® the following conditions hold: (i) Ht(ÇW)±Ht(Ç

U)) 
for i^j; (ii) setting Ft

{ï) = E[\Çt®\2]9 Fu) is absolutely continuous with 
respect to F(/> forj > i; ƒƒ,(£) = 2 , © #,(£,)• Of course each (f,(/), t E ƒ) is a 
process with orthogonal increments. The length of the sequence f(/) is called 
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the multiplicity M. So 1 < / < M + 1, with M a positive integer or oo. Now 
(f,(/), / E ƒ, 1 < ƒ < M + 1) is an innovation process. It leads directly to a 
canonical representation for | , namely 

t Jo 
where the functions c, satisfy 

2 fV/(^")|2^(w)<oo. 
The innovations process is not uniquely determined by (£„ / E ƒ), but the 
multiplicity M is, and so is the sequence [F®]9 1 < i < M + 1, where [F(/)] is 
the equivalence type of JF(/) under mutual absolute continuity. The sequence 
[F(i)], 1 < i < M + 1, is called the structural type of (£„ / E ƒ). It is in fact 
uniquely determined by the family (i/,(£), t E ƒ), and, conversely it 
determines this family up to isometry: another such family {Ht(^\ t E I) will 
have the same structure type if and only if there is an isometry from H{K]) 
onto //(£) taking Ht(v) onto //,(£) for each t E L 

Using ideas from the theory of Gohberg and Kreïn [6] on Volterra 
operators it is possible to show that a sufficient condition for (//,(£), t E / ) 
and (Ht{r]\ -q E I) to have the same structural type is the following: 

(*) there exists a linear homeomorphism A between H{t]) and //(£) such 
that At]t = £, for all / E ƒ, and (ƒ — A*A) is a Hilbert-Schmidt operator. 

The condition (*) was originally introduced by Feldman [5] in a slightly 
different context. He showed that if the processes (£,, t Œ I) and (TJ„ t E I) 
are Gaussian, so that each has a distribution entirely determined by its 
covariance, then these distributions are mutually absolutely continuous if (*) 
holds, and they are orthogonal if (*) fails. 

Of course given two processes (£,, t E ƒ) and (ry,, / E I) with covariances 
Bç(s, /), Bv(s, i) one would like criteria in terms of B± and Bv for deciding 
whether or not the relation (*) holds. A good deal of work has been done on 
this problem. For example, Shepp [9] characterized all Bv so that (*) holds 
relative to Bç(s, t) = min(>, /), I = [0, 1] (this is the covariance of the Wiener 
process). 

The notions introduced by Cramer are significant generalizations of 
concepts known from the stationary case, that is the case I = (— oo, oo), 
B(s, t) = B(t — s). This is the situation investigated in the classical studies on 
prediction theory by Kolmogorov, Wiener, Wold and others. For an 
exposition and references consult the relevant chapter of Doob [4], including 
the pertinent historical notes at the end of the book; a more recent account, 
discussing the case |, is «-dimensional, is given in Rozanov [8]. It can happen 
that the spaces Ht are all equal to H_00(Q = fl / e / ^ / ( ö a n d this is known as 
the deterministic case; otherwise one is in the nondeterministic case, a subcase 
of which is the purely nondeterministic situation H^^iQ = W- (This is 
Cramer's terminology; various mutually inconsistent terminologies are in 
use.) The problem of characterizing the different cases analytically in terms of 
B(t) was solved by Kolmogorov. Since B is positive definite it is the 
Fourier-Stieltjes transform of a distribution function, the spectral distribution 
function, and it is in terms of this that characterizations are given. In any case, 
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Hanner, and Karhunen had shown that, (in Cramer's terminology) if £ is a 
(scalar) stationary process which is purely nondeterministic then it has 
multiplicity M = 1 and spectral type ([m]), where m is Lebesgue measure. 
This contrasts with the results for nonstationary processes where, even in the 
purely nondeterministic case any value of M can occur. 

In the book under review Rozanov surveys the indicated problem area, 
including the situation where £, may be vector space valued. Rozanov himself 
has made many contributions toward the solutions of these problems. It 
seems remarkable that he manages to give complete proofs and numerous 
examples in this book of 133 short pages. The translation from the Russian, 
edited by A. V. Balakrishnan, reads very well. The book should be welcome 
by both novice and experts in the field. 
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Equations of mixed type, by M. M. Smirnov, Transi. Math. Monographs, Vol. 
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Just what is an equation of mixed type? Equation here means partial 
differential equation, and if some of these are of mixed type, there must be 
others not of mixed type. What are they? To answer these questions we must 
know the labels which are attached to various classes of partial differential 
equations. As one would expect, the labeling process has evolved over the 
years in a disorderly way; by now however the terminology has stabilized for 
many (but far from all) classes of equations. As is the case for the problem of 
taxonomy in the biological sciences, the subdivision of partial differential 
equations into clearly defined classes has not been systematic. New terms 
continue to develop as the need arises. For example, the term strongly elliptic 
was invented to identify a special subclass of the class of elliptic equations. 
Classes overlap: hypoelliptic equations contain some elliptic equations and 
some which are not elliptic; both the class of linear equations and the class of 


