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Algebraic topology is a very young and restless subject. Many of its most 
active areas did not exist a decade ago, or existed only in embryonic form. 
Examples include the theory of localizations and completions, rational homo-
topy theory, the study of finite //-spaces, exploitation of the Brown-Peterson 
spectrum and other new techniques in the calculation of stable homotopy 
groups, algebraic AT-theory and the homotopy theory of categories, exploita
tion of techniques from algebraic geometry, and infinite loop space theory 
and its applications. Similarly, many techniques and constructions that are 
already accepted by workers in the field as standard and elementary are 
equally new. One thinks of localizations, completions, the classifying spaces 
of monoids and categories, the geometric transfer, the plus construction, etc. 
Not one of these things is so much as mentioned in even the most recent and 
advanced texts in the subject (and if this sounds like a rebuke to their 
authors, why so be it). 

If this is true of standard and elementary parts of the subject, then it is 
hardly surprising that the deeper machinery relevant to the more sophisti
cated new areas is virtually inaccessible without direct contact with practi
tioners. The goal of Adams' book is to "convey the basic ideas of the subject 
in a way as nearly painless as I can make it". By "the subject" he means 
infinite loop space theory. But in fact he has succeeded in giving the basic 
ideas not just of this specialty but of much of modern algebraic topology, 
including capsule introductions to many of the topics mentioned above. I 
urge anybody teaching algebraic topology on any level and anybody working 
or thinking of working in the subject to read this book. One or two patches 
might be a little hard going, particularly in Chapter 6 (and the reader is given 
fair warning), but for the most part the book provides some of the most 
delightful and illuminating exposition to be found, not just in topology, but in 
mathematics. It is written with style and wit, and reads like a novel (in places, 
as on pp. 112 and 144, like a roman a clef, although the characters in the 
drama are usually identified even when being chided). The truth is, whatever 
we may say, that we invent mathematics because it is fun. Seldom has the 
spirit of the enterprise been so successfully captured in print. Would that 
treatments in a similar vein were available in other supposedly impenetrable 
abstract areas of mathematics. 

Nevertheless, of course, the emphasis is on infinite loop space theory, and 
some of my colleagues don't much see the fun in that. There are various areas 
of mathematics that are widely regarded with suspicion and dislike because of 
the quantity of pure abstraction involved. There are also various areas that 
are widely regarded with suspicion and dislike because of the quantity of 
grubby calculation involved. Infinite loop space theory runs simultaneously 
to both extremes and so has something to offend everyone. 
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What cannot be denied is that the calculations work. For example, if one 
wants to know the characteristic classes for topological bundles or for 
spherical fibrations or, more concretely, if one wants to determine whether a 
given Poincaré duality space has the homotopy type of a topological manifold 
or if one wants to determine the set of equivalence classes under cobordism of 
topological manifolds, then one must learn something about infinite loop 
space theory. 

These are only a few of the earlier calculational applications. There are 
various other direct and indirect applications to manifold theory, algebraic 
^-theory, and stable and unstable homotopy theory, and the number of 
applications is growing rapidly. 

Adams' book concentrates on the theoretical core of the subject. He cites 
[14] for a more complete survey of the results and applications. However, 
although written in 1976, that reference is already woefully incomplete. The 
three articles [15], [16], and [17] summarize more recent developments and 
together include sixty or seventy references too new to appear in the bibliog
raphies of [14] or of Adams' book. I must apologize for referring to so much 
of my own writing but, despite the very large amount of work going on in this 
area, there are no other surveys except the brief early one of Stasheff [23]. 
Comprehensive treatments of the earlier applications and calculations are to 
be found in [4], [13], and Madsen and Milgram [9]. 

Well, what is infinite loop space theory? There are three ways of looking at 
what amounts to more or less the same subject, displayed as 

cohomology theories <-» spectra «-» infinite loop spaces. (*) 

A cohomology theory E* on spaces assigns a group EnX to each space X in 
such a way that the Eilenberg-Steenrod axioms other than the dimension 
axiom are satisfied. Then EnX is a "representable functor" of X, so that EnX 
is the group of homotopy classes of maps X -» En for some space En. The 
axioms imply that En is equivalent to &En+v the "loop" space of (based) 
maps from a circle into En+X. Spaces such as E0 are called infinite loop 
spaces, meaning that there is a space En and an equivalence of E0 with 2nEn 

for each n > 0. 
The core of infinite loop space theory is concerned with the elucidation of 

the internal algebraic structure present on infinite (and w-fold) loop spaces. 
These are //-spaces with all sorts of infinite families of coherence homotopies 
for associativity and commutativity of their products, and a major task is the 
encapsulation of all this information in workable form. With a suitable 
formulation, one can then reverse the passage from spectra {En} to infinite 
loop spaces E0. That is, given a suitably structured space X, one can 
manufacture "deloopings" BnX and equivalences between X and Q"BnX. 
There are three main machines for carrying out this program, due to Board-
man and Vogt, Segal, and myself [3], [22], [12]. All three may be viewed as 
exercises in topological algebra, the study of algebraic structure on topologi
cal spaces. However, the elaborate nature of the algebraic structure that must 
be encoded demands an abstract context of categorical topological algebra 
previously foreign to algebraic topology. Adams gives motivation for and 
incisive descriptions of these machines. At the very end, he mentions the 
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recent work of Thomason and myself [18] which axiomatizes the passage 
from structured spaces to spectra and so shows that there is really only one 
machine, but this development came too late to affect the body of the book. 

One virtue of studying such structured spaces is that the internal algebraic 
structure leads directly to powerful computable invariants, notably homology 
operations and transfer, the latter of which is quite thorougly studied in 
Adams' book. (Cohen and I have given a comprehensive treatment of the 
former [4].) For the applications, the crucial point is that, while the three 
concepts in the display (*) are essentially equivalent from a categorical point 
of view, they carry quite different and mutually complementary calculational 
information. 

As I have already mentioned, exploitation of this structure now impinges 
on a broad range of topological problems far removed from the concerns of 
infinite loop space theory. I would like to reinforce this point by citing a few 
quite recent examples. 

This structure leads (in [12]) to simple combinatorial approximations to 
spaces of the form QP^ÏPX. Mahowald [11] found a remarkable way to exploit 
this structure to construct infinite families of elements in the stable homotopy 
groups of spheres. This has led to a stream of further work, and there are 
other quite different ways (summarized in [17]) of exploiting the cited ap
proximation. In particular, it leads to a very simple proof of the Kahn-Priddy 
theorem [7] to the effect that the /?-torsion of the stable homotopy groups of 
spheres is a direct summand of the stable homotopy groups of the classifying 
space of the/?th symmetric group. Infinite loop space techniques in one form 
or another are essential to any proof of this result. In turn, this result and 
further techniques from infinite loop space theory are essential to Nishida's 
proof [20] (see also [15]) of the nilpotency of the ring of stable homotopy 
groups of spheres. 

Again, infinite loop techniques play a key role in Waldhausen's marvelous 
theory [25] (see also Steinberger [24]) relating the stable concordance groups 
of PL manifolds to algebraic AT-theory. 

In connection with algebraic ^-theory, Quillen's work [21] relating the 
general linear groups of finite fields to the "Image of / " spaces of topological 
^-theory extends to all classical groups of finite fields and leads to a rich 
feedback circuit relating these finite groups and their homologies to the 
infinite loop spaces of geometric topology and their homologies [Fiedorowicz 
and Priddy [5], [4], [13], and [14]]. 

In these theories, a ring theoretical elaboration [13] of the topological 
algebra of infinite loop space theory plays a central role. 

Another example, discussed in Adams' book, is Becker and Gottlieb's 
striking use [2] of the infinite loop space structure on the classifying space for 
stable spherical fibrations in their proof of the Adams conjecture. 

As a final example, I cite Jones' use [6] of Kochman's calculations [8] of the 
homology operations of classical groups in his concrete construction of a 30 
dimensional manifold with nontrivial Kervaire invariant. 

What these applications have in common-and the list is far from exhaus-
tive-is the use of the results but not of the internal machinery of infinite loop 
space theory. It is a sign of a genuinely important technique in algebraic 
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topology that it becomes a standard every day tool used by workers quite 
unconcerned with how the tool was derived. It is a peculiarity of the subject 
that the work involved in setting up machinery-whether it be singular 
homology, the Serre or any other spectral sequence, localization and comple
tion, or the machinery under discussion-often bears little or no technical 
relationship to the work involved in applying the machinery. Adams' book, 
while also succeeding in the wider (and perhaps unintended) goal of introduc
ing much of modern algebraic topology, is primarily aimed at allowing 
present and prospective workers to feel at home with the new infinite loop 
space machinery. It succeeds admirably. 

A secondary and more technical goal, limited to Chapter 6, is the detailed 
analysis of the relationship between maps of the spectra of topological 
A'-theory and maps of their underlying infinite loop spaces. This builds on 
work of Adams and Priddy [1], which is summarized, and is primarily due to 
Madsen, Snaith, and Tornehave [10], whose main theorems are given com
plete new proofs. 

Of course, a few quibbles are de rigeur. Adams rightly emphasizes the 
"group completion theorem " describing the behavior of the natural map 
G -» QBG for a not necessarily grouplike topological monoid G. This result is 
crucial to all rigorous verifications of the central axiom given in [18] for 
infinite loop space machines. However, in Adams' sketch proof, it is assumed 
that "the technicians" can define a certain comparison map of spectral 
sequences. Perhaps they can (although this one needed help from Adams), 
but the audience for whom the book is intended surely cannot. To my mind, 
the definitive treatment of this result is in the paper [19] of McDuff and 
Segal. 

Again, the particular geometric construction of the transfer given in §4.1 
strikes me as redundant. The construction in §4.2 seems much more useful 
and is the one relevant to later parts of the book. While Adams does use the 
first description to derive properties of the transfer in §4.3, the simpler 
verifications work equally well either way, while the product formula left 
unfinished on page 127 comes much more simply from the second descrip
tion. 

And some of the jokes (listed as such in the index!) are excruciating. 
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Hilbert's third problem, by Vladimir G. Boltianskiï (translated by Richard A. 
Silverman and introduced by Albert B. J. Novikoff), Scripta Series in 
Math., Wiley, New York, 1978, x + 228 pp., $19.95. 

1. Since the response to the title of this book is invariably "What is 
Hubert's third problem?", let us begin by considering the problem itself. 
Loosely speaking, it asks whether there is any way of deriving the formula for 
the volume of a tetrahedron without using calculus. Clearly there is no hope 
of avoiding all mention of limits in most questions of volume, for it is by 
appealing to a limit process that the very notion of volume is extended to any 
figure more general than a rectangular solid having rational edges. Analo
gously, limits are needed to extend the concept of area beyond rectangles 
having rational sides. Hubert's problem acknowledges such fundamental 


