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pp. 

Category theory is not just a branch of mathematics; it is, in some sense, 
the language of all mathematics. As Strooker so aptly puts it: "categories are 
there to make different topics more transparent by revealing common under­
lying patterns." Before elaborating on this point, let me begin by reviewing 
some of the fundamental concepts of category theory for the uninitiated. 

An oriented graph consists of two classes, the class of arrows and the class 
of objects, together with two mappings between them, called source and 
target. 

source 
arrows =£ objects 

target 
Instead of saying that source (ƒ) = A and target (ƒ) = B, we write more 
briefly/: A -» B. 

A category is an oriented graph in which for every object A there is an 
identity arrow \A : A -* A and which is endowed with a composition of arrows 
as follows 

f:A-*B g:B-»C 
gf:A^C 

Moreover, the following equations are postulated: 

V = /, A*=/, (hg)f=h(gf), 
where h: C -* D. 

Objects of interest to mathematicians usually flock together in categories. 
Thus we have the category Top of topological spaces, whose objects are 
topological spaces and whose arrows are continuous functions. We also have 
the category Grp of groups, whose objects are groups and whose arrows are 
homomorphisms. Last but not least, there is the category Sets of sets and 
mappings between them. 

Closer inspection shows that the objects of mathematics may themselves be 
categories. Thus a topological space X may be viewed as a category whose 
objects are the open subsets of X and whose arrows are the inclusion 
mappings between open subsets. More generally, any preordered set may be 
regarded as a category: elements are objects, and there is at most one arrow 
x -*y for any pair of objects, precisely one when x < y. Also a group, or 
even a monoid, may be considered as a category with only one object whose 
arrows are the elements. Finally, a set may be looked upon as a discrete 
category in which there are no arrows other than identities. 

A modern Pythagoras might have said: "all things are categories." To this a 
modern Heraclitus might have replied that it is not the categories that are 
important but the functors between them. 
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A functor T: (3, -» $ between categories & and % consists of two func­
tions, both denoted by T9 from the class of objects of ($, to that of % and 
from the class of arrows of & to that of %, subject to the conditions that 

TuynZinBY T^ = x™ T{8f) = r(*W)-
For example, any topological group G determines a functor UG: Topop-> 

Grp. Here &^ denotes the opposite of the category & : It has the same objects 
as 6E, but its arrows are reversed. UG(X) is the group of all continuous 
functions from the topological space X to the underlying space \G\ of G, and 
UG(f)(h) « hf for all ƒ: Y-*X and h: X-*\G\ in Top. Also, a functor 
between preordered sets is an order preserving mapping and a functor 
between monoids is a homomorphism. 

Not surprisingly, categories themselves are the objects of a category Cat 
whose arrows are functors. For set-theoretical reasons, one usually insists that 
the objects of Cat are small categories, that is, categories whose classes of 
objects and arrows are sets. 

Given categories & and %, we may consider the functors 6E -> % as 
objects of a new category ((£, $ ) whose arrows /: S -» T are natural transfor­
mations, that is, mappings t from the class of objects of & to that of arrows of 
® such that t(A): $(A)-+ T(A) for each object A of &, subject to the 
equation 

T(f)t(A) - t{A')S{f) 

for all arrows/: A -+ A' in 6£, as illustrated by the following "commutative" 
diagram 

t(A) 

S (A) V T(A) 
S(f)i IT(f) 
S{A') -» T{Af) 

HA') 
It has been said that categories were invented by Eilenberg and Mac Lane 

in order to explain what natural transformations are, these having been 
observed to occur in mathematics previously, the usual example being the 
isomorphism between a finite-dimensional vector space and its double dual. 

Our modern Heraclitus would not have been content to emphasize the 
importance of functors, he would have pointed out that they frequently occur 
in pairs. F: & -> % is called left adjoint to U: © -> â if there are natural 
transformations r\\ 1#-» UF and e: FU'~+ 1$ such that the composite natural 
transformations 

yU Ue Ft] tF 

U-* UFU-* U, F-+ FUF-* F 

are identities, that is to say, 
lF{A) 

for all objects A of & and B of S . 
Adjoint functors generalize Galois correspondences between preordered 

sets. Examples abound in mathematics. The functor F which assigns to every 
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set X the free group F(X) generated by X is left adjoint to the "forgetful" 
functor U: Grp —» Sets which assigns to each group B its underlying set U(B). 
The functor UG: Topop-»Grp associated with a topological group G met 
earlier has a left adjoint FG which assigns to each group A the topological 
space of all homomorphisms from A to the underlying group of G. In fact, 
every pair of adjoint functors Topop *± Grp comes from a topological group in 
this way. 

F 
A pair of adjoint functors &^±% is an equivalence of categories if r}(A): 

A -» UF(A) and e(B): FU(B) -» B are isomorphisms for all objects A of & 
andtfof ffi. 

To illustrate this strict notion of equivalence, let (2°p be the category of 
compact (Hausdoff) Abelian groups, % the category of abstract Abelian 
groups. Given any compact Abelian group A, F(A) is the group of all 
continuous homomorphisms of A into the compact group R/Z. Given any 
abstract Abelian group B, U(B) is the group of all homomorphisms of B into 
the underlying abstract group of R/Z, with a topology induced by R/Z. The 
fact that 7j(A) and e(B) are isomorphisms is the celebrated Pontrjagin 
duality. 

F 
In any case, a pair of adjoint functors & <=z © gives rise to an equivalence 

between certain full subcategories &Q of & and ©0 of %. {Full means that if 
A and A' are in &$ then so is any arrow A -» A' of 6B.) Here (ÎQ consists of all 
objects A of $ for which TJ04) is an isomorphism and ©0 consists of all 
objects B of © for which e(B) is an isomorphism. 

inclusion ^ ^ inclusion 

<2o « © 0 

Heraclitus would have called the equivalence SQ ^ ©0 the "unity of oppo-
sites". 

Under fairly general circumstances it will happen that t\UF is an isomor­
phism, which implies that eFU is also an isomorphism. In that case the 
inclusion functor âç -> & has a left adjoint and one calls &Q a full reflective 
subcategory of 6B. The inclusion functor ©0 -» % then also has a right 
adjoint and ©0 becomes a full coreflective subcategory of ©. 

For example, let & be the category of rings and % the category Topop. 
Consider the two-element ring Z/(2) as a topological ring with the discrete 
topology. Let U(B) be the ring of continuous functions from the topological 
space B to the underlying discrete space of Z/(2), and let F(A) be the 
topological space of homomorphisms of A into the underlying ring of Z/(2). 
Then F is left adjoint to U, the induced equivalence being between the 
category (S^ of Boolean rings and the category ©0, where ®QP *S ^ e category 
of zero-dimensional compact Hausdorff spaces. This is the famous Stone 
duality. Moreover, in this example, Boolean rings form a reflective subcate­
gory of the category of rings and zero-dimensional compact Hausdorff spaces 
form a reflective subcategory of Top. 

In a similar fashion, we obtain a pair of adjoint functors between the 
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category & of Banach algebras and the category © = Topop mediated by the 
Banach algebra of complex numbers. This time SQ is the category of com­
mutative C*-algebras and %QP is the category of compact Hausdorff spaces. 
Moreover, the latter is a reflective subcategory of Top, and the left adjoint of 
the inclusion functor is the well-known Stone-Cech compactification. 

Having expressed a personal view of category theory and its applications, 
let me acknowledge a philosophical debt to Bill Lawvere and point out that 
details of the above examples have been elaborated in collaboration with 
Basil Rattray. It is now time to turn to the book under review. 

Strooker does not wish to lose sight of the origin and purpose of category 
theory. His book is rich in illustrative examples taken from different parts of 
mathematics. In particular, he evidently set himself the aim of preparing the 
reader for a study of the cohomology of sheaves. In his own words: "Sheaves 
and their cohomology are important tools in such diverse mathematical 
disciplines as algebraic topology, theory of analytic functions, algebraic geom­
etry and others. Though there are differences in their use in these different 
areas, they have an underlying pattern in common which is best expressed in 
categorical language/' 

Given the author's aim, the plan of the book is determined. Since sheaves 
of modules form at best an Abelian category (see below), homological algebra 
must be developed not just for module categories, but for Abelian categories 
in general. Let us take a detailed look at the four chapters of the book. 

Chapter 1 deals with general concepts of category theory more or less along 
the lines sketched above. However, it should be pointed out that the author's 
definition of a category is more traditional than the above. In fact, he 
assumes that, for all objects A and B, the class of arrows A -» B is a set. This 
has the disadvantage that for (6£, © ) to be a category he must assume that 6£ 
is small, that is, has only a set of arrows. It has the advantage that one has a 
canonical functor Horn: £op X & ~> Sets. I liked the careful treatment of 
adjoint functors; but I did not like the fact that functors @?p -* % are 
sometimes described as "contravariant functors & -> 65 ", albeit that this is a 
traditional point of view. 

The first chapter soon concentrates on the notion of limit. Given a functor 
T: § ~» (£, one may look at the category of lower bounds of T: its objects are 
pairs (A, t) where A is an object of & and / is a natural transformation to T 
from the functor with constant value A; its arrows (A, t) -» (A\ t') are arrows 
a: A -» A' such that t\I)a = t(I) for all objects I of 3. It may happen that 
the category of lower bounds of T has a terminal object (A0, t0), by which is 
meant that from every other object (A, t) there is a unique arrow to (A0, t0). 
Then (A0, t0) is usually called the limit of T. For obvious reasons (and 
following the reviewer's past practice), the author calls (A0, t0) the "infimum" 
of T. The more usual term "limit" comes from a special case: the inverse limit 
of an inverse family of objects of & is the limit of T: 5 -» (£, denoted by 
lim T, when $ is a downward directed set, here regarded as a category. 
Inverse limits in éE°p are also called direct limits and denoted by lim T. 

Of special interest are two other cases of the notion of limit. At one 
extreme, S may be discrete, that is, have no arrows other than identities. Then 
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lim T is the product of all T{I\ I ranging over the objects of 5. At the other 

extreme, we have the case when 5 is the category I z$ J. Then lim T is the 

equalizer of T(i) and T(J) in <£. It turns out that arbitrary limits may be 
constructed from products and equalizers. & is called complete if limits of T: 
5 -» & exists whenever 5 is small, that is, when & has small products and 
equalizers. 

The author gives an up-to-date version of Freyd's adjoint functor theorem, 
which states conditions under which a limit preserving functor from a 
complete category % into some other category possesses a left adjoint. These 
conditions are trivially satisfied when © is complete and small, as the author 
remarks. It ought to be pointed out that small complete categories must be 
preordered sets, hence complete lattices, as has been observed by Freyd; but I 
could not find this information in the present text. 

A highpoint is the author's treatment of Kan extensions. If 6 is a complete 
category and /: & -» % is any functor, the induced functor (/, 6): ( $ , 6) -» 
(A, 6), where (ƒ, Q)(G) = GI for all G: % -» 6, has a left adjoint S. By the 
Kan extension of F: & -» (2 along I is meant the functor S(F): % -» S. This 
concept turns out to be very useful, as we shall see. 

Chapter 2 deals mainly with additive and Abelian categories, but begins 
with monomorphisms and epimorphisms, whose discussion has been wisely 
deferred until this point. A monomorphism m is an arrow with the cancellation 
property mf—mg=*f=g, and epimorphisms are defined dually, they are 
just monomorphisms in the opposite category. 

In familiar concrete categories monomorphisms are injective mappings, but 
epimorphisms are not necessarily surjective. Thus, in the category of Haus-
dorff spaces, a continuous function e: A -» B is an epimorphism if and only if 
e{A) is dense in B. 

A category & is called additive if Hom(A, B) is an Abelian group, for each 
pair of objects A and B, and if composition of arrows is bilinear. If there is a 
terminal object in an additive category, it is also initial, that is, terminal in the 
opposite category; it is then called a null object and denoted by 0. In an 
additive category all finite products are also coproducts, that is, products in 
the opposite category. In an additive category the equalizer off:A->B and 
0: A -» B is called the kernel off; its importance arises from the fact that the 
equalizer of ƒ, g: A -» B is the kernel of ƒ — g. Cokernels are kernels in the 
opposite category. 

Of special interest are Abelian categories, which may be defined as additive 
categories with null objects, kernels and cokernels, such that every monomor­
phism is a kernel, every epimorphism is a cokernel and every arrow is 
composed of an epimorphism, called the coimage, followed by a monomor­
phism, called the image. There are many other ways of describing Abelian 
categories, and the author-in his own words-"does not resist some pretty 
juggling of axioms", following Puppe. 

In an Abelian category one may define "exact sequences", a pair of 
morphisms A ~> B -* C being exact if the image of A -» B is the kernel of 
B -+ C. One may also engage in the activity known as "diagram chasing" to 
prove results about exact sequences and commutative diagrams. Crucial is the 
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following result, known as the snake lemma: given the diagram, 

0 
I 

K ~» K" -» X -* O 
4 5 I 6 I 

Af -** A -* A" —» 0 
4 3 4, 4 4 

0 ~» £ ' -~* # ~» IT 
4 1 4 2 4 

0 -> r ~* c -» c 
I 
0 

in which all rows and all columns are exact and all squares are commutative, 
then I s y, In view of the so-called "connecting" arrow K" ~+X s&Y-*C\ 
we then obtain an exact sequence K-+ K" ~± C' ~* C of considerable impor­
tance in homological algebra. 

To prove the snake lemma, or other such results, one has a number of 
options. 

(1) One can prove these results for module categories and then use the 
Mitchell embedding theorem to deduce them for arbitrary Abelian categories. 

(2) One can construct and utilize binary relations for Abelian categories, as 
is done in Mac Lane's "Homology" for module categories. 

(3) Without explicitly mentioning relations, one can mimic them with the 
help of broken arrows. 

(4) One can use the technique of chasing squares (see below). 
The author choses (3). He eschews the embedding theorem and the theory 

of relations altogether and proves the snake lemma for Abelian categories 
directly by means of ingenious auxiliary diagrams. The reviewer cannot resist 
the temptation to push his pet method (4), which is based on the following 
two-square lemma 

A -» B -» C 
4 I l II l 
D ~» E -» F 

Assuming that both squares are commutative and that both rows are exact, 
then 

lm(D-+E) n I m ( £ - > £ ) _ Ker(B-+F) 
Im(A-+E) ~ Ker(£->C) + Ker(£-*£•) ' 

This may be summarized by writing I m l s Ker II. Here U/ V is under­
stood in the sense that 0~» F~> £/-> £/ /F~»0is exact. This lemma holds 
not only in Abelian categories, but in more general kinds of categories, 
including the category of groups. Its general proof is due to Leicht. 

To deduce the snake lemma, one just argues thus 

Im 1 a Ker 2 a Im 3 a Ker 4 s lm 5 a Ker 6. 

To compute Im 1 and Ker 6, we look at the auxiliary diagrams 
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0 
I 
Y 
i 
Y 

-» 
1 

-» 
0 
—* 

B' 
I 
C' 
i 
0 

0 
i 

K" 
4 

A" 

—* 
1 
—» 
6 
-* 

and note that 
Im 1 a Ker 0 a Y, Ker 6 a Im 7 a jf. 

Abelian categories of special interest are Grothendieck categories. A 
Grothendieck category is a cocomplete Abelian category with a generator G 
and exact direct limits. Here & is called cocomplete if 6£°p is complete. An 
object G of & is called a generator if for all ƒ ^ g: >4 -> 2? in éE, one can find 
h: G~-»A such that yft ^ gA. To say that £ has exacl direct limits means that, 
for every upward directed set 5, the functor lim: ($,&)-+& (which is left 
adjoint to the constant functor) preserves exact sequences. 

Grothendieck categories are essentially characterized by the Gabriel-
Popescu theorem. This celebrated theorem asserts: if R is the ring of endo-
morphisms of the generator G of the Grothendieck category &9 the functor 
U « Hom(G, —):<$-* Mod R is full and faithful and has a left adjoint F 
which preserves monomorphisms, hence preserves exact sequences. To say 
that U is faithful means that, if ƒ ¥* g: A -* B in &9 then U(f) =£ U(g); to say 
that U is full means that every arrow U(A) ~» U{B) in Mod R has the form 
U(f) for some/: A -» 2? in 6E. The theorem may be interpreted as saying that 
& is equivalent to a full subcategory of Mod R which consists of the 
"torsionfree-divisible" modules with respect to some injective module. 

I shall take a moment to explain what this means. A "torsion theory" in 
Mod R is determined by an injettive module ƒ, that is, a module I so that, for 
every monomorphism m: B-*A, every homomorphism ƒ: B-+I can be 
extended to some/': A ~» I such that ƒ 'm = ƒ. The torsionfree modules with 
respect to I are those modules which admit a monomorphism into some 
power Ix. The divisible modules with respect to I are those modules D for 
which E(D)/D is torsionfree, where E(D) is the injective hull of Z>, that is, 
the minimal injective extension of D. The modules which are both torsionfree 
and divisible with respect to J form a full reflective subcategory of Mod R 
which is a Grothendieck category. The Gabriel-Popescu theorem then asserts 
that, up to equivalence, every Grothendieck category is of this form. 

The original proof of the Gabriel-Popescu theorem makes extensive use of 
torsion theories. The author gives an ingenious elementary proof that the 
functor F: Mod R -» & preserves monomorphisms. He first considers a 
monomorphism M ~» L where M is finitely generated and L is free, he then 
drops the condition that M is finitely generated, and finally drops the 
condition that L is free. This proof is ascribed to Harada in [16]. 

The importance of the Gabriel-Popescu theorem lies in the fact that it 
allows one to infer many properties of & from those of Mod R9 for example, 
that & is complete, has injective hulls and possesses an injective cogenerator. 

Chapter 3 deals with homological algebra in an arbitrary Abelian category 
&. If A and C are objects of &9 Ext(C, A) consists of all equivalence classes 
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of exact sequences 0-»>l -»2?->C-»0in &. It is traditional to call B an 
extension of C by A, although to a ring theorist B is an extension of A and 
not of C. Under mild assumptions on (£, Ext(C, A) will be a set rather than 
merely a class. This is the case not only when & is small, but also when & has 
enough projectives, that is, for every object A there is an epimorphism P -> A 
with P projective, that is, injective in (3?p. It is also the case, dually, if éB has 
enough injectives. One then obtains a functor Ext from &op X & to Sets or to 
the category Ab of Abelian groups. 

Given an exact sequence 0 -> A' -> A -» A" -* 0 in #, one obtains an exact 
sequence of Abelian groups 

0 -* Hom(,4", C ) ~> Hom(,4, C) -* Hom(,4', C) 

-* Ext(^ ", C ) -> Ext(,4, C ) -> Ext(,4', C ). 

One may wish to continue this exact sequence to the right, using Extn(4, C), 
where Ext°(A, C) = Hom(v4, C) and ExtV, C) = Ext(4, C). Indeed, 
Ext"(C, A) may be defined with the help of exact sequences 

0->A-*Bx- .->Bn-+C->0, 

just as in the case n = 1. 
According to Cartan-Eilenberg there are two ways of generalizing the 

above setup from Ext(—, C) to arbitrary additive functors from an Abelian 
category to the category Ab of Abelian groups. "The slow but elementary 
iterative procedure leads to the notion of 'satellite functors'. The faster, 
homological method using resolutions leads to the 'derived functors'. In most 
important cases both procedures yield identical results". 

Strooker's discussion of derived functors is traditional and I shall say 
nothing about it. However, his treatment of satellites is unusual and follows a 
suggestion by Gabriel. He constructs the additive category (Sf with objects 
(A, w), where A is in (S and m E N. Arrows (A, m) -» (2?, n) are elements of 
Extn~m(A, B), and composition of arrows is an associative operation dis­
covered by Yoneda. Suppose & is small and % is cocomplete as well as 
additive, and consider the functor (/, <$>): ((2e, $ ) - > ( # , %) induced by the 
obvious inclusion J: & -» âe. It has a left adjoint S, which assigns to each F: 
&-+% its Kan extension S(F): (Sf -» %. The additive functors from & to 
© are in one-to-one correspondence with "connected" sequences of additive 
functors from & to %. The sequence of functors corresponding to S(F) is 
called the sequence of satellites of the additive functor F. 

Chapter 4 finally deals with sheaves and their cohomology. The best way to 
introduce sheaves is yet another example of Heraclitean unity of opposites. 
Let & be the functor category (Xop, Sets), also called the category of 
presheaves over X, where X is a given topological space, here regarded as a 
category. Let $ = Top/A" be the category of spaces over X, whose objects 
are continuous functions p: Y-> X, Y in Top, and whose arrows from p: 
Y -» X to / / : y -» X are continuous functions ƒ: Y -* Y' such that p'f = /?. 
Let U: $ -^ & assigns to each/r. Y -+ X the functor U(p): Xop -» Sets such 
that, for each open subset V of X, U(p)(V) is the set of continuous sections, 
that is, functions/: F-> Y withpf = the inclusion V-*X. It is not difficult 
to see that U has a left adjoint F. Indeed, for each presheaf A, F(A) may be 
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described simple-mindedly as the colimit of all open subsets V of X indexed by 
all elements a G A(V). 

In this situation we have an equivalence of full subcategories %0 of <35 and 
(Jo of &. Here $o is the category of sheaves on X and %0 the category of local 
homeomorphisms p: Y->X, also called "espaces étalés", and the left adjoint 
to the inclusion &$ -* & is the so-called sheafification functor. 

Strooker treats sheaves essentially by the method just outlined, except that 
he takes % = ®0 to start with and that, like other writers on the subject, he 
constructs F(A) as the disjoint union of stalks p~l(x) = lim{yl(F)|.x; E X}, 
over all x G X, endowed with a certain topology. 

From sheaves of sets he passes to sheaves of modules. These form an 
Abelian category, to which the apparatus of homological algebra now applies. 
In particular, the right derived functors of the global section functor from 
sheaves of i^-modules to Mod R are studied as forming a cohomology theory 
in the sense of Eilenberg-Steenrod. The last few pages are devoted to special 
kinds of sheaves that go under the picturesque names "flabby", "soft", and 
"fine". 

The book under review began as a set of lecture notes at the University of 
Utrecht ten years ago. It was lovingly translated into English by C. J. 
Penning, who is also credited for having suggested many revisions. The 
author asserts quite modestly that the book was intended as a textbook for 
students and not as a monograph for mature mathematicians. In this re­
viewer's opinion, even many of the latter could benefit from reading it. 

REFERENCES 

1. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 
1956. 

2. S. Eilenberg and S. Mac Lane, General theory of natural equivalences, Trans. Amer. Math. 
Soc. 58(1945), 231-294. 

3. S. Eilenberg and M. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, 
Princeton, N. J., 1952. 

4. P. Freyd, Abelian categories. Harper and Row, New York, 1964. 
5. P. Gabriel and N. Popescu, Caractérisation des catégories abéliennes avec générateurs et 

limites inductives exactes, C. R. Acad. Sci. Paris, Sér. A 258 (1964), 4188-4191. 
6. R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1964. 
7. P. J. Hilton and U. Stammbach, A course in homological algebra, Springer-Verlag, Berlin 

and New York, 1971. 
8. D. M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294-329. 
9. J. Lambek, Goursafs theorem and homological algebra, Canad. Math. Bull. 7 (1964), 

597-608. 
10. , Torsion theories, additive semantics and rings of quotients, Lecture Notes in Math., 

vol. 177, Springer-Verlag, Berlin and New York, 1971. 
11. J. Lambek and B. A. Rattray, A general Stone-Gelfand duality, Trans. Amer. Math. Soc. 

248 (1979), 1-35. 
12. J. B. Leicht, Axiomatic proof of J. Lambek*s homological theorem, Canad. Math. Bull. 7 

(1964), 609-613. 
13. S. Mac Lane, Homology, Die Grundlehren der Mathematischen Wissenschaften, Band 114, 

Springer-Verlag, Berlin and New York, 1963. 



928 BOOK REVIEWS 

14. S. Mac Lane, Categories for the working mathematician, Springer-Verlag, Berlin and New 
York, 1971. 

15. B. Mitchell, Theory of categories, Academic Press, New York, 1965. 
16. N. Popescu, Abelian categories with applications to rings and modules, Academic Press, 

London and New York, 1973. 
17. D. Puppe, Uber die Axiome fur abelsche Kategorien, Arch. Math. (Basel) 18 (1967), 

217-222. 
18. N. Yoneda, On the homology of modules, J. Fac. Sci. Tokyo I 7 (1954), 193-227. 

J. LAMBEK 

BULLETIN (New Series) O F THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 1, Number 6, November 1979 
© 1979 American Mathematical Society 
0002-9904/79/0000-0508/$02.00 

Convexity in the theory of lattice gases, by Robert B. Israel, Princeton Series in 
Physics, Princeton Univ. Press, Princeton, N. J., 1979, LXXXV + 168 pp., 
$16.50 (cloth). 

Lattice gases? This sounds very much like physics. And what have they to 
do with convexity? The mathematician may be pardoned if he is puzzled, but 
he could't do better than to look into this book if he wants to find out what 
this is all about. Lattice gases are certain mathematical models that occur in 
statistical mechanics. Statistical mechanics was created a near-century ago by 
J. Willard Gibbs, who conceived the idea of a general explanation for the 
laws of thermodynamics. It was also Gibbs who in two pioneering papers, 
rather neglected ever since, suggested that the proper general formulation of 
the laws of thermodynamics may be made in terms of certain functions, 
called thermodynamics potentials, which characterize the physical systems 
considered, and whose convexity is the mathematical expression of the stabil­
ity of states of thermal equilibrium. Our book under review is actually two 
books in one; the first is an introductory essay by Arthur Wightman, which 
contains the historical motivation, an exposition of the Gibbsian ideas, the 
significance of convexity of the thermodynamic potentials, as well as a brief 
review of the formalism of statistical mechanics as left to us by Gibbs. This is 
far more than an introduction, and it alone is worth the price of the book. 
The reader is advised to come back to it from time to time, when studying the 
more technical proofs of Israel's chapters, to gain motivation, deepen under­
standing, and appreciate interconnections. 

On to the technicalities. First, definitions. A lattice gas is a mathematical 
system determined by five things, v, S20, /XQ, ti and ®. v is a positive integer, 
the "dimension". S20 is a compact Hausdorff space, frequently just a finite set. 
fi0 is a distinguished natural normalized measure on S20, e.g. Haar measure if 
Q0 is a group, uniform surface measure if S20 is a sphere, normalized counting 
measure if £20 is finite. With Z the set of integers, write L = Zv (the "lattice"), 
and think of a copy of (fi0, fx0) attached to each point ("lattice site") of L. Q is 
defined as a closed, translation-invariant (under the natural action of the 
additive group L) subspace of the compact space S2Q î t ' l u s a point ("config­
uration") w G Ö is a function L -» fi0 assigning a "coordinate" cox G fl0 to 
each x G L. A typical example is S20 = (0, 1}, Q = (co G 2%: uxo)y = 0 


