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with the slow treatment of everything else. 
Now motivation My students always find logic exciting and perplexing 

(though I, personally, usually do not give them their first logic course!). When 
Mendelson's now classic text was published, Goodstein wrote in Mathemati­
cal Reviews (29 #2158) "Motivation [is] adequate"-damning by faint praise. 
The present book contains virtually nothing to link it with the rest of 
mathematics-or logic-for a couple of hundred pages. That is asking a lot of 
the reader unfamiliar with logic. 

For the reader who is a logician a note of warning. Many of the definitions 
are highly nonstandard. Thus the definition of elementary extension on 
p. 124, though technically equivalent to the (standard) one in, say, Chang-
Keisler (1973), might cause some confusion as Lightstone allows constants in 
his formulae for all elements of the models. 
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At last there is at hand in this book a systematic and complete (though 
austere) presentation of the recent extensive developments in category theory 
leading to the notion of an elementary topos. This notion arose by the 
confluence of two separate trends, from geometry and from logic. 

On the one hand, Grothendieck had observed that a topological space X 
can be studied in terms of its sheaves F. Indeed, he replaced X by the 
category Sh(Ar) of all sheaves F of sets on X, and called this category a topos, 
on the grounds that this was what the topologists need. 

To define a sheaf F on a topological space X, one does not need the points 
of the space, but only its open sets U and their coverings by other open sets. 
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The typical example is the sheaf C which assigns to each open set U the set 
C(U) of all continuous real-valued functions on £/. In general, a "presheaf" F 
assigns to each open U a set F(U) and to each inclusion V c U a, "restric­
tion" map F(U)->F(V), written ƒ *-*f\V as if it were the restriction of a 
function /-and with the corresponding properties for composition of restric­
tions. Such a presheaf is a sheaf if, for every covering { Ut\i E ƒ } of an open 
set [/, each ƒ E F(U) can be put together uniquely from its "pieces" ft = 
ƒ | If-provided only that on each intersection Ut n Uj the piece ƒ matches the 
piece fj. The sheaves, defined thus in terms of coverings of open sets, suffice 
to get the cohomology of X (Chapter 8). For example, in the category of all 
sheaves of sets one can also construct a sheaf A of abelian groups; it is simply 
a sheaf of sets with suitable operations + : A X A-> A and — : A ->A9 

satisfying the appropriate identities, as expressed by commutative diagrams. 
Thus the topos Sh(̂ T) suffices for cohomology of a topological space. For 

cohomology groups in algebraic geometry one needs the more general 
"Grothendieck topologies". Here the open sets of X are replaced by the 
objects of any category C, and the inclusions V G Uby arrows V-» U of C. 
With the appropriate properties for "coverings", one has made C into a site 
with coverings / and one has a definition of sheaf so as to produce again a 
category Sh(C,/). Such a category is still called a "topos", sometimes a 
"Grothendieck topos". 

Pursuing this idea, Giraud found necessary and sufficient conditions that a 
given category be such a topos, for some "site" (C, / ) . 

On the other hand, in 1964, Lawvere had raised a question of foundations: 
Could one replace the usual Zermelo-Fraenkel axioms on membership in sets 
by suitable axioms on functions between sets, that is, axioms on the category 
Set of sets? His initial axiom system of this type was cumbersome. Then in 
1969-1970 Lawvere and Tierney at Dalhousie University observed that 
Giraud's conditions for categories of sheaves, when moderately altered and 
weakened, could be stated in elementary terms, using only first order logic. 
These weakened axioms describe what is now called an "elementary" topos. 
It can be the category of sheaves of sets on some topological space or on a 
site for some Grothendieck topology; in particular, it can be the ordinary 
category of all sets (= sheaves on a one-point space). It can also be the 
category of all presheaves on a space, where a presheaf is just any functor on 
the open sets of the space, with no matching conditions on coverings. Still 
more generally, it can be the category of all functors to sets from any small 
category C (not just some category C of open sets). A typical example is the 
category of all diagrams X0 -> Xx -» X2 -» • • • of sets Xé; such a diagram 
can be considered as a set X "varying through time" 0, 1, 2, 3, . . . just as a 
sheaf of sets can be viewed as a set varying through space. In other words, 
one can axiomatize the category of sets effectively by choosing first axioms 
which also apply to other similar categories such as sheaf and functor 
categories. This idea frees set theory from its prior (and stiff) uniqueness. 

Once recognized, this line of ideas had a rapid and sometimes confusing 
development, hard for an outsider to follow except by diligent study of 
successive issues of lecture notes. Happily, all this development, up to 1977, is 
now captured and codified in Johnstone's monograph. It begins with a 
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hard-hitting historical introduction: "I do n o t . . . like Grothendieck . . . view 
topos theory as a machine for the demolition of unsolved problems in 
algebraic geometry . . . but I do believe that the spreading of the topos-theo-
retic outlook into many areas of mathematical activity will inevitably lead to 
the deeper understanding of the real features ôf a problem which is an 
essential prelude to its correct solution". 

The reader may need a deeper study of the book to see what this means, 
but the understanding is there. On an elementary level, there is for example 
the observation of Lawvere that a /-indexed family of sets Xj for y E ƒ is best 
viewed as a single set X (the disjoint union JLJiÇ.) with a map X-*J. 
Technically, with / fixed, this leads to the recognition that the category of all 
functions ƒ: X -> / , with arrows the evident maps over / between two such 
functions,is an elementary topos; moreover, this applies for/, X, and / in any 
given topos S. In other words, the original function / -* Set given by j H> XJ 
is replaced by a function X -» ƒ. Similarly, a construction due to 
Grothendieck replaces a functor F: C -» Set on a (small) category C by a 
category D mapped onto C by a projection functor P: D —> C; explicitly, D is 
the category of all the "elements" {<x, c>, x E F(c)} of the functor F, while 
the functor P<x, c> = c satisfies a special condition (is a "discrete opfibra-
tion"). This observation is much more than a simple translation of one 
description F: C -» Set of a set-valued functor into another equivalent 
description. For, if we replace the category of sets in this context by a more 
general topos S, we can still describe what we mean by a small category C 
"internal" to &. The objects of C are represented by one object C0 of S, the 
object-of-objects, while the arrows (or morphisms) of C are represented by Cl5 

the objects-of-arrows. This description is supplemented by two arrows Cx -» 
C0 giving the domain and codomain, plus an arrow for composition, satisfy­
ing the usual associative law, expressed in diagrammatic form. However, this 
concept of an internal category does not allow any corresponding way of 
describing, by diagrams or otherwise, a functor F mapping the internal 
category C into the (large) external category S. However, there is an 
alternative description of such a functor F by another internal category D and 
a suitable "internal diagram" P: D -» C. With this description, one readily 
can form the external category S c of all such internal diagrams. In other 
words, for any internal category C in a topos S, one has a category S c whose 
objects are all the internal functors P on C to S. This is like the usual 
"functor categories" of all set-valued functors on a category C; these functor 
categories are known to be useful in many ways, especially in homological 
algebra. Moreover, we have (Chapter 2) the theorem that S a topos makes S c 

a topos, just as in the case of sets. 
This straightforward, better understanding of set-valued functors is in its 

turn a tool to the better understanding of the theorem of Giraud, characteriz­
ing those categories which are categories of sheaves on some topological 
space or on some Grothendieck topology. This is done (see below) by way of 
a "relative" Giraud theorem which is more general ("sets" replaced by any 
topos) and at the same time simpler. 

The topos-theoretic approach also provides such better understanding in 
many other connections: In the construction from a presheaf of its associated 
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sheaf; in the very meaning of a Grothendieck topology as used in the 
definition of a sheaf; in the presence in each presheaf category of the 
"algebra" of its open sets, a Hey ting algebra (= intuitionistic variant of 
Boolean algebra); in the consequent presence of an "internal" intuitionistic 
logic (the Mitchell-Benabou language) to express definitions and properties in 
any topos; in the observation that the double negation operator -» -i in this 
internal logic is at the same time a topology on the topos; and in the discovery 
that sheafification for this topology is the heart of Paul Cohen's proof of the 
independence of the continuum hypothesis-all items to be discussed below. 

The axioms for a topos depend on a similar better understanding of the 
"universal" properties of the basic constructions of set-theory. For example, 
the set 1 with just one element can be described as a terminal object in the 
following sense: For any set X, there is exactly one function X -*l. Origi­
nally, the "pullback" of a function g: Y~*Z along another function 
ƒ: X -» Z is described as the set P of those pairs (x, y} of elements with 

fx = gy; instead it now appears as the vertex P in a square diagram 

P -* Y 
Ï if 
X -* Z 

g 

which is "universal" for given ƒ and g in the sense that for any different 
choice P' of P, there will be a unique P' ~» P. Such pullbacks include 
products (take Z «= 1). If a category has all pullbacks and a terminal object, 
then it has all finite (projective) limits. 

There is a similar better understanding of the meaning of the characteristic 
function ƒ of a subset S of a set A. As usual, one defines ƒ by setting fix) = 0 
or 1 according as x G S or x ÇÊ S. Then ƒ: X -» {0, 1} maps X to the set 
Q = {0, 1} of "truth values". The inclusion t: {0}-> {0, 1} is a "typical" 
subset; indeed a universal one, because the definition of the characteristic 
function ƒ of S says precisely that S is the pullback of t along ƒ, as in the 
diagram 

S -+ 1 
m% %t 

A - * Q 
ƒ 

where 1 = {0} is the "terminal" object in Set. The corresponding axiom for 
an elementary topos S now states that each such topos S has an object Q 
called the subobject classifier, and an arrow /: 1 ~» B, called "true", such that 
every monomorphism m: S ~» A in S is the pullback of true along a unique 
arrow/: A -» Q. One may think of ƒ as the "property" of A whose "extension" 
is the subobject S. With this formulation, functor categories and sheaf 
categories, etc., all have subobject classifiers. For example, in the category of 
sheaves on a topological space X, the subobject classifier 0 is the sheaf which 
assigns to each open U in X the set of all open subsets of X, while Q' for 
presheaves has Q'(U) the set of all sieves (of open sets) on U. 

Johnstone's monograph is more systematic. The axioms on a topos S 
require that S be a category with all finite limits, with for each X an 
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exponential (a functor) ( )* right adjoint to ( ) X X: & -» S, and with a 
subobject classifier, as above. These axioms are elementary, when the limits 
and adjoints are described (as with fil above) by their universal properties. In 
short order, Johnstone exhibits the power of this combination of axioms, 
proving first a variety of elementary facts: That equivalence relations R are 
"effective", i.e. that quotient sets of equivalence classes exist; that the 
singleton map X -* Qx is monic; and that partial maps, i.e. maps defined on a 
subset of X to Y are reçresentable; that is, can be obtained by pullback from 
a suitable monic Y>~* Y. Since subobjects of A correspond to arrows A « 1 
X A -* Ü and thence, by the definition of the exponent, to arrows 1 -» &*, 
the assignment A*-*®4 is the contravariant power-set functor P. This leads 
up to Fare's observation that P is right adjoint to its opposite functor Pop, 
hence that P is monadic (triplable), and hence by the crude version of Beck's 
triplability theorem, that Sop is a category of algebras over S . 

Since S has all finite limits, so does the category Sop of P-algebras. 
Therefore the topos S has all finite colimits. Thus one has the result, first 
proved by a direct method by Mikkelsen, that every elementary topos has not 
only finite limits, but also finite colimits (initial object 0, coproducts, and 
"pushouts"). Previously this had been assumed as one of the axioms for an 
elementary topos, while a Grothendieck topos was required to have coequa-
lizers of equivalence relations and (infinite) coproducts. 

The subobject classifier Q functions as an "object of truth values". For sets, 
Î2 = {0, 1}, with the usual two truth values, as noted above. For other toposes 
Q is not usually two-valued. For sheaves, Ü(U) is the set of open subsets of U; 
since the work of Stone in the 1930's, this has been recognized as a Hey ting 
algebra (= a Brouwerian lattice) (note in particular that the complement ~i V 
of V open in U need not satisfy - n K « VI). In a general topos H is an 
object and not a set, but it still is always a Heyting-algebra object, in that one 
can define operations such as 

A : Ö X Ö - » f i , -• : S2 -» Q 

and V» =» which satisfy the diagrammatic versions of the axioms for a 
Hey ting algebra. Johnstone's presentation disperses these definitions (§1.49, 
3.1, and Chapter 5) and so may hide the natural topological origin of the 
algebra, but the definitions themselves are simple: For example, intersection 
/ \ is the characteristic function of the subobject / X /: 1 X 1 -»fl X Î2; false: 
1-»Q is the characteristic function of the subobject 0-> 1, and -i is the 
characteristic function of "false". With this start, Johnstone develops in §5.4 
the explicit Mitchell-Benabou language for a topos S, which includes quanti­
fiers and which allows formulation of internal (intuitionistic) properties in 
any topos, and which satisfies all the usual axioms and rules of inference of 
intuitionistic predicate logic, save modus ponens (p. 155). This clearly repre­
sents a connection with logic, worthy of deeper understanding. 

Johnstone's Chapter 3 starts with a quick (and almost deadpan) introduc­
tion of the beautiful notion of topology in a topos. First consider the topos of 
presheaves on a space X; there, as already noted, the subobject classifier Q is 
the functor with Q(U) the set of all sieves on U (a sieve being a collection of 
open subsets V of £/, containing with each V all open subsets of V). 
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Grothendieck's observation about coverings draws attention to the set J{U) 
of all those sieves on U which cover U. Thus J c S is a subfunctor (a 
subpresheaf) and so has a characteristic funtion j : Q -» Î2. Moreover, j has 
three characterizing properties: 

ƒ =y, j t r u e = true, j /\ = A (7 Xy): £2 X £2-»fi. 

These three properties (or the corresponding commutative diagrams) capture 
exactly the Grothendieck-Artin definition of a "Grothendieck topology". 
Hence a topology on a topos S is arrowy: Q -» Ö with these three properties. 
Far though they may seem from the ordinary notion of a topological space, it 
is a simple and perspicuous definition. Johnstone shows in short order how 
this definition and the standard procedures lead to a definition of those 
objects in S which are sheaves relative to the topology y and to the proof that 
these objects constitute a topos Sh7(Ê) with subobject classifier the image ofy. 
The proof that the inclusion function Sh^S ) -* S has a left adjoint, "sheafifi-
cation", is more subtle; Johnstone gives the proof from his thesis, which is 
ingeniously adapted from the Grothendieck proof. The chapter ends with an 
illuminating list of examples; in particular, in any topos & the map -i -i : 
S2 —> S2 given by double negation is a topology. Thus the intuitionist Brouwer 
meets the topologist Brouwer! 

A geometric morphism ƒ: S ~> S ' of toposes (Chapter 4) is a pair of 
functors ƒ*: & -> &' and/*: S ' -» S such that/" is left adjoint to f+ and left 
exact as well. The name arises from topology, since a continuous map ƒ: 
X -» Y of spaces carries each sheaf G on X, regarded as a functor on open 
sets, forward to a sheaf f+G on Y and also carries each sheaf G' on 7, 
regarded as an "espace étale" over Y, backward by pullback to a sheaf f*G' 
on 7. Johnstone notes many other examples of geometric morphisms; in 
particular the inclusion Shy(S ) ~» S. (Logical morphisms of toposes are 
functors preserving all the structure; they play a lesser role.) If S is a fixed 
topos, one is led naturally to the category Top/S of "toposes over S"; its 
objects are geometric morphisms ƒ: 5" ~» S and its arrows g: ¥ -» (%' are 
geometric morphisms with ƒ 'g = ƒ. For example, if C is an internal category 
in S, the category S c , already noted above, is a topos over S. Diaconescu's 
theorem (1975) plays a central role; given/: 3 r - » S , it shows that the 
geometric morphisms g: *$ -> S c over & correspond exactly to those internal 
presheaves G on f*C which are flat, in the sense that G regarded as a 
category is filtered. Johnstone gives a most perspicuous proof of this theorem: 
Given g, the associated flat presheaf is constructed as the pullback g*Y of the 
Yoneda bifunctor 7; on the other hand, given G one constructs the geometric 
morphism g by describing its "inverse image" half g*: S c -» F. Explicitly, g* 
sends each internal diagram D in S c to f*D ® G. Here ® is Benabou's 
elegant tensor product of functors. 

In the topos of all sets, the arrows x: 1 -* X correspond exactly to the 
elements of X. Moreover, these elements suffice to distinguish functions. 
Specifically, iff=£g: X -» 7, there is an element x: 1 -» X with fx j£gx; we 
say that the object 1 generates the topos Set. This simple situation need not 
obtain in a more general topos: Each object X still has "elements" x: 1 -> X, 
but 1 need not generate the topos. A set T of objects of & is said to generate 
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the topos & when to any two different arrows ƒ ^ g : X -* Y of $ there exists 
an object G of T and an arrow h: G-*X with fh ^ gh. For example, in the 
topos S h ^ ) of sheaves F on a topological space X, the terminal object 1 is 
the constant sheaf 1, so an "element" 1 ~» F is just a global cross-section of 
the sheaf F. Two different maps fg: F-» F ' need not differ on a global 
cross-section, so 1 does not generate. However, the subsheaves of the sheaf 1 
are essentially just the open sets U of the space X, and ƒ ^ g means that there 
is some open set U c X with fv ¥= gv and hence a map h: U-* F with 
fh ^ gh. Hence in Sh(X) the subobjects of 1 form a set of generators. This 
illustrates the way in which a general topos diverges from the topos of sets. 

Giraud's theorem, as already suggested, characterizes those categories S 
which are equivalent to the category Sh(C, / ) of sheaves on the site (C, J) of 
some Grothendieck topology; the Grothendieck toposes S so characterized 
are always elementary toposes, but not conversely. In the preliminary com­
ments to his book, Johnstone states this Giraud characterization (four exact­
ness conditions, plus two smallness conditions; small horn sets and a set of 
generators); he also sketches, rather cryptically, the Giraud proof. The main 
text then illuminates this whole situation by using the Diaconescu theorem to 
give Diaconescu's proof of a simple and more general "relative Giraud 
theorem". First note that the global cross-section functor T: Sh(C, / ) -» Set is 
(the direct part) of a geometric morphism; moreover, up to a canonical 
isomorphism, this is the only geometric morphism from Sh(C, J) to Set. 

The Giraud theorem then reduces to the statement that an elementary 
topos S is a Grothendieck topos if and only if it has a geometric morphism to 
the topos Set and also has an object G whose subobjects generate S. This 
notably simplifies the Giraud theorem. The "relative" version now replaces 
Set by an arbitrary topos S. It states that a geometric morphism/: <% -» S is 
naturally isomorphic to the composite *% = Sh^S0) -» S c -» S for some 
internal category C on S and some topology/ if and only if ƒ has an "object 
of generators" G-one with the property that to each X in <$ there is an object 
Y in S, a subobject S of f* Y X G and an epimorphism S -*-> X (when 
& = Set, f*Y X G is just a 7-indexed copower of G in F). The proof is long 
but illuminating. 

In 1964 Lawvere observed that the Peano axioms on the 0: 1 -» N and 
successor functions s: N -» N for the set N of natural numbers could be 

0 s 

replaced by the simple statement that l-+N^>N is universal among dia-
a u 

grams 1-+X-+X in Sets, meaning that there is a unique g: N-*X with 
g(0) = a and gsn = ugn. The very form of this description provides at once 
for the definition by recursion of functions like g-much more effectively than 
in the usual constructions from the axioms of Peano. The same Lawvere 
axiom describes a "natural number object" N in any topos and so provides, 
as in set theory, an axiom of infinity for a topos. Given such an N one 
constructs, in a straightforward way, addition and multiplication in N> finite 
cardinals, the object Q of natural numbers and the object R of real 
numbers-with the Cauchy reals a subotyect (p. 215) of the Dedekind reals! 
There are more surprising uses of the natural number object N; for example, 
its presence in S is equivalent (Theorem 6.41) to the existence of free 
monoids in S, and is the starting point for universal algebra in &. Moreover, 
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following Wraith, one can construct from S with N a new topos & [ U] with a 
designated object U and a geometric morphism & [ U] -» S so that U is an 
object classifier: any object V in any topos *$ over S can be had (up to 
equivalence) by pulling U back along a unique geometric morphism <$ -» 
S [ f/] over £ . Intuitively, S [ f/] is the free topos obtained by adjoining to S 
an indeterminate object U. This is an analogy to the 1972 construction by 
Hakim of a topos over S containing a ring object R which was similarly a 
r/rtg-classifier, universal for commutative ring objects in toposes over S. Here 
a commutative ring may be regarded as a model (in a topos) of the usual 
finitary algebraic theory of rings. But, as Johnstone observes, we frequently 
have to consider objects with a structure which is not purely algebraic in this 
sense, in that the structure is defined by formulas which are not simply 
equational, as for example in the case of local rings. Now a local ring A can 
be described as a commutative ring with zero 0, identity element e and a 
"group of units" U c A such that 0 —> 1 is the equalizer of the two maps 0, e: 
1 -* A and such that for all a in A, either a or e — a is in U. The logical 
formulas expressing these two properties are not algebraic equations, but have 
the happy property that they are preserved not just by logical morphisms of 
toposes, but also by the inverse image maps of geometric morphisms of 
toposes. This leads to the precise definition (p. 199) of a finitary geometric 
theory stated by formulas (using A> V> and 3, but not -n, =>, or V) and thus 
to the proof of the decisive theorem (Joyal, Benabou, Tierney) on classifying 
topoi: If T is a finitely presented finitary geometric theory and S a topos 
with a natural number object N, there exists a topos & [T] over $, which is a 
classifying topos for T, in the sense that there is an equivalence between 
models of T in a topos <$ over S and the category of geometric morphisms of 
<$ into &[T] over S. From this theorem, Johnstone goes on to discuss the 
work of Hakim and J. C. Cole on spectra for a topos, and to indicate some of 
the fascinating further questions in these directions. 

These developments emphasize the connections from topos theory to 
algebraic geometry and universal algebra. From the original Lawvere 
axiomatic viewpoint, there are also close relations with set theory. Clearly the 
axioms for an elementary topos have more models than (and hence are 
much weaker than) the Zermelo-Fraenkel axioms for set theory. So, following 
Freyd, define a well-pointed topos & to be one in which the terminal object 1 
is (as in sets) a generator while the unique map 0 —> 1 is not an isomorphism. 
This compares directly with "weak Zermelo set theory" as described by E. J. 
Thiele; the axioms are extensionality, empty set, unordered and ordered pairs, 
the power set, union sets, foundation (i.e. regularity), and the restricted 
comprehension axiom (the usual comprehension, but only for formulas 
having quantifiers which are "restricted", as in (\/s)s Ex or ( 3 / ) ' €E>0-
Such a restricted comprehension does include the usual uses of the compre­
hension axioms in mathematics. Then if M is a model of weak Zermelo set 
theory, the category S (M) of sets and functions in M is a well-pointed topos. 

The converse construction requires some way of constructing sets (with 
their elements!) within a topos-where there do not appear to be elements. 
This issue is met by using sets T which are transitive, in the sense that 
x E y E T implies x E T. From any set S one may construct, via the 
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replacement axiom of Zermelo-Fraenkel, the set T of all members of mem­
bers of 5, thus embedding S in a transitive set T. The membership relation R 
restricted to a transitive set T is both extensional and well founded, and these 
two properties, recast in terms of the possibility of a suitable recursion, suffice 
to define in any topos a "transitive" object T-an object X with an extensional 
and "well-founded" binary relation r. Now from a topos S one constructs 
"sets" as suitable equivalence classes of tuples (X, r, m), where X with r is a 
transitive object and m: 1 -^ Qx is a "global element" of the "power set" of X. 
These sets S(&) provide a model of weak Zermelo set theory. Together 
M H» S (M) and S H> S(& ) compare set theory and topos theory. To get the 
best comparison, add to weak Zermelo set theory two easy consequences of 
replacement (every set can be embedded in a transitive set and any set with 
an extensional well-founded binary relation is isomorphic (Mostowski, 1949) 
to a transitive set. Similarly we add to the axioms of a well-pointed topos the 
requirement (judiciously formulated; see p. 314) that every object of & can be 
embedded in a transitive object. Then we get the definitive theorem, due to 
Cole, Mitchell, and Osius, that S(S>M) is isomorphic to M and S(S'S) is 
equivalent to S. This provies equiconsistency between well-pointed topos 
theory and weak Zermelo set theory. 

Other corresponding axioms can be added to both sides of this comparison. 
For instance, the axiom of choice for a topos S is the statement that every 
epimorphism in S splits (has a left inverse). This axiom implies that that 
topos is Boolean (Theorem 5.23). This theorem of logic was first proved, by 
Diaconescu, in its topos-theoretic form. 

The Cohen proof of the independence of the continuum hypothesis pro­
vides another striking connection with logic (Chapter 9). One starts with a 
model Set of set theory, with N, its power set QN, and a still larger set / which 
is to be "forced" to fall within QN. Thus each i G I is to be a subset of N. 
One starts with a finite set P of conditions to this, of the form m G / o r « g ; 
for m, n E N and i,j G ƒ. The set P of all these/? is a poset, hence a (small) 
category. From it one constructs the functor category Set7*. In this topos, as 
in every topos, j' = -i -i is a topology. Forming the sheaves for this topology 
yields another topos 3F = S h _, ^(Set7*) which is Boolean, i.e. the Heyting 
algebra object fi is a Boolean algebra, because —i —i is now the identity, but 
not yet two-valued. Much as in the classical case, one then finds a suitable 
ultrafilter and uses the "calculus of fractions" to divide . <$ out by this 
ultrafilter so as to construct from <$ a two-valued Boolean topos in which the 
continuum hypothesis suitably fails. 

This brief outline of this elegant proof applies mutatis mutandis both to the 
original Cohen proof and to the Lawvere-Tierney topos-theoretic variant. The 
use of double negation appears explicitly in the Cohen papers, but only in 
retrospect does one see the presence of sheaves for the double negation 
topology. The topos-theoretic version needs suitable auxiliary techniques, 
most critically the construction (5.46) within the exponent object Yx (the 
"set" of all functions X ^ Y) of an object Epi(̂ T, Y) of all epimorphisms 
X — Y. At any rate, the analysis of forcing in a critical case raises the 
question as to how and whether numerous other examples of set-theoretic 
forcing might be reduced and understood better via the construction of sheaf 
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toposes in place of Boolean-valued models. So far this has been done (by M. 
Bunge; see p. 329) only for the independence of the Souslin hypothesis. 

These are by no means the only connections with logic. DeUgne's theorem, 
that every "coherent" topos has enough "points" (Theorem 7.44), is in­
timately related to the Gödel-Henkin completeness theorem for finitary first 
order theories, and there is (Theorem 7.16) a similar categorical version of the 
Lowenheim-Skolem theorem. In other words, topos theory not only devel­
oped from a collision of algebraic geometry and set theory, but this collision 
has set off various other surprises: Sheaves appearing in set theory and 
completeness theorems in algebraic geometry. Other connections-with 
cohomology theory, with torsors, and with profinite fundamental groups-are 
left for the reader to discover in Johnstone's book. 

This book does provide good examples of the better understanding prom­
ised in the introduction. To achieve this understanding, the reader must on 
occasion study hard, to get at what is behind the economical presentation, 
with little motivation, of all the techniques and corresponding theorems. Only 
by choosing this austere presentation was the author able to bring all these 
(and many other ideas) in the brief compass of 360 pages. 

There is a very helpful index of notation at the back. Given the range of 
theorems collected from many authors reported here, usually in neater and 
quicker ways, I located very few slips; Theorem 0.14 from Eilenberg and 
Moore is misquoted, while Theorem 7.37(i) from Grothendieck on coherent 
topoi is misproved; both can be corrected by reference to the original sources. 
Lemma 9.17 is misnumbered-but enough of such carping comments. This is a 
dense and rich book, which has organized valuable material as an aid to our 
deeper understanding of sheaf theory, logic, and algebra. 
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Symmetry and separation of variables, by Willard Miller, Jr., Addison-Wesley 
Publishing Company, Reading, Massachusetts, 1977, xxx + 285 pp., $21.50. 

Separation of variables is a technique for solving special partial differential 
equations. It is taught in elementary courses on partial differential equations, 
but the method usually does not achieve the status of a mathematical theory. 

Because most references do not give a precise definition of separation of 
variables, I invented a definition myself. Let us call a partial differential 
equation in n variables xl9..., xn separable if there are n ordinary differen­
tial equations in xl9.. •, xn> respectively, jointly depending on n — 1 inde­
pendent parameters (the separation constants), such that, for each choice of 
the parameters and for each set of solutions (Xl9..., Xn) of the o.d.e.'s, the 
function u(xl9..., xn) := Xx(xx) • • • Xn(xn) is a solution of the p.d.e. Under 
the terms of this definition a converse implication often holds: If u = 
Xx • • • Xn is a factorized solution of the p.d.e. then, for some choice of the 
parameters, the Xt

9s are solutions of the o.d.e.'s. The most familiar cases of 
separability deal with a linear second order p.d.e. which separates into n 


