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Mathematical methods of classical mechanics, by V. I. Arnold, translated from 
the 1974 Russian edition by K. Vogtmann and A. Weinstein, Graduate 
Texts in Math., Vol. 60, Springer-Verlag, New York and Berlin, 1978, 
x + 462 pp. 

A course in mathematical physics, vol. 1: Classical dynamical systems, by 
Walter Thirring, translated from German by Evans M. Harrei, Springer-
Verlag, New York and Berlin, 1978, xii + 258 pp., $19.80. 

The science of mechanics is the oldest branch of applied mathematics. The 
principles underlying the kinematics of a particle were established early in the 
seventeenth century by Galileo, and their applications developed further by 
Christian Huygens after Galileo's death. The fundamental principles of 
particle dynamics were laid down by Newton and expounded by him in his 
great work Philosophiae naturalis principia mathematica (1687). The extension 
of these principles to cover the theory of the motion of rigid bodies was 
carried out by d'Alembert and the results published in his Traité de mécanique 
(1743). Although the foundations of analytical dynamics (or, as it is some­
times called, rational mechanics) were laid before that date as is evidenced by 
the publication in St. Petersburg in 1736 of Euler's Mechanica, sive motus 
scientia analytice exposita, the outstanding event in the early history of 
mechanics was the publication of Lagrange's Mécanique analytique in 1788. 

The opening words of the Avertisement to Lagrange's treatise were: "On a 
déjà plusieurs Traités de Mécanique". Of course, the number of treatises on 
analytical dynamics is vastly greater now than it was in 1788, for the reason 
that many distinguished mathematicians found the subject a rich source of 
research problems and the literature of the subject became correspondingly 
large. The theoretical work of the century and more after the death of 
Lagrange was crystallized by E. T. Whittaker in a treatise [19] which has not 
been superseded as the definitive account of classical mechanics. That work 
reveals that among those who have made significant contributions to the 
subject are Carathéodory, Cauchy, Darboux, Gauss, Jacobi, Lie, Liouville, 
Poincaré, and Weyl. In that era, mathematicians worked in both pure and in 
applied mathematics. That problems in analytical mechanics stimulated re­
search in pure mathematics was shown by the work of G. D. Birkhoff whose 
Colloquium Lectures in 1920, [5], led ultimately to the development of a new 
branch of abstract mathematics. 

The position of classical mechanics within university curricula changed 
after World War I. No doubt because a knowledge of the principles of 
dynamics is basic to astronomers, physicists, and engineers-and because each 
group demands a different selection of topics from the many making up the 
subject-the responsibility for the teaching of classical mechanics was 
surrendered by mathematics departments in many universities and assumed 
by faculty members in other departments. (It is interesting to observe that, a 
few years ago, some mathematics departments, conscious of the gap left by 
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the abandonment of classical mechanics, introduced courses on "modeling" 
-apparently ignorant of the fact that elementary mechanics provides the 
simplest examples of the modeling process!) Excellent accounts of the 
mathematical theory were given by Banach [4], Wintner [20], Lanczos [8], and 
Synge [18] but the majority of the many texts which appeared between 1920 
and 1970 were directed to the needs of particular users. For that reason, Pars 
in the Preface to his comprehensive and elegant treatise [14] wrote: "In recent 
years there has been a marked decline among mathematicians of interest in 
the classical dynamics." 

What Pars did not realize was that the impulse to reverse the swing of the 
pendulum had already been given by Kolmogorov in his invited address [6] to 
the International Congress of Mathematicians in Amsterdam in 1954 and in 
his paper [7]. The problem discussed in this latter paper arose from the 
difficulty that the methods devised by Poincaré [15] for calculating perturba­
tions in celestial mechanics all led to divergent series and gave no information 
about the behaviour of a dynamical system as a whole over very long 
intervals of time. The divergence of the series arises from "small divisors" 
which vanish for exact resonance, so that close to resonance the terms of the 
series become very large. This difficulty is characteristic not only for prob­
lems of celestial mechanics but for all problems which are close to being 
integrable. Poincaré himself stated that the fundamental problem of dynamics 
was the study of the motions of a system with Hamiltonian. 

H-H0(I) + €HX(I94>)9 € « 1, 

in action-angle variables I and <j>. Here H0 is the Hamiltonian of the 
unperturbed system and eHx a perturbation which is a 277-periodic function of 
the angle variables <j>l9..., <J>W. Because Arnold [2] gave an alternative proof 
of Kolmogorov's result it has become known as the Kolmogorov-Arnold 
theorem; this theorem and the Moser twist theorem [11] together provided the 
solution of Poincaré's fundamental problem. A lucid exposition of the ap­
plication of this method to celestial mechanics was given by Sternberg [17] 
and, much later, by Moser himself in [16] and [12]. 

The time was now ripe for a presentation of the theory of classical 
mechanics in terms of the theory of differentiable manifolds which had been 
developed since the appearance of the fourth edition of Whittaker's treatise. 
Abraham's monograph [1] was the first to appear but it proved to be too 
difficult for the average student and it was due to the circulation of Saunders 
Mac Lane's lecture notes [10] and the publication of the textbook by Loomis 
and Sternberg [9] that the new formulation of classical mechanics reached a 
wider audience. 

That formulation still had, of necessity, its roots in the work of the last 
century-in the realization that the equations of motion of a dynamical 
system, either in Newton's or in Lagrange's, could be derived from a simple 
variational principle (Hamilton's principle of least action). This stated that the 
motions of a conservative system coincided with the extremals of the func­
tional 

f L(q, q, t)dt 
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where L = T — U, the difference between the kinetic and potential energies, 
and called the Lagrangian of the system, is a function of the n generalized 
coordinates q = (qv ..., qn) used to describe the motion. Hamilton's princi­
ple is derived from Newton's second law of motion; then Lagrange's equa­
tions of motion are derived by means of the calculus of variations. By means 
of a Legendre transformation in which pj = dL/dqj the system of n second-
order Lagrange equations may be converted to a remarkably symmetrical 
system of In first-order differential equations (called Hamilton's equations), 
involving the Hamiltonian function 

n 
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The q-space is called the configuration space, and the (p, q)-space is called 
the phase-space. The phase flow is the one-parameter group of transformations 
of phase-space 

g':{p(0),q(0)}H>{p(»,q(0} 
where {p(/)> q(0} is a solution of Hamilton's equations. Liouville's theorem, 
that the phase flow of Hamilton's equations preserves volume in the phase-
space, is what allows the application of the methods of ergodic theory to 
classical mechanics [3]. 

These classical ideas can be cast in the language of the theory of differen­
tiable manifolds. A Lagrangian system (M, L) is then defined in the following 
way: suppose that M is a differentiable manifold with tangent bundle T{M) 
and that the map L: T(M)~-»R is differentiable. We say that a map x: 
R -* M is a motion in the Lagrangian system (M, L) if x is an extremal of the 
functional 

$(x)= Ç L{±)dt 

where x denotes the velocity vector x(t) G rx(r)(M). M is called the configura-
ton manifold, and L the Lagrangian function of the system. 

The evolution of the local coordinates q = (ql9..., qn) of a point x(t)9 

under motion in a Lagrangian system (M, L) is governed by Lagrange's 
equations 

dt 8q 3q ' 

where L(q, q, t) is the expression for the Lagrangian function in terms of the 
local coordinates q, q on T{M). 

If M is a Riemannian manifold, the quadratic form, defined by 

r=4<v,v>, mUM), 
on each tangent space, is called the kinetic energy of the system, and a 
differentiable map U: M -» R is called a potential energy. A Lagrangian 
system on a Riemann manifold is said to be a natural system if its Lagrangian 
function is equal to the difference T - U of the kinetic energy T and a 
potential energy U. Natural systems, not unexpectedly, have more interesting 
properties than more general Lagrangian systems. 
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It is a striking fact that various "conservation laws" in mechanics are 
particular cases of a general theorem, due to Emmy Noether [13], which states 
that, to every one-parameter group of diffeomorphisms of the configuration 
manifold of a Lagrangian system which preserves the Lagrangian, there 
corresponds a first integral of the equations of motion. To put Noether's 
theorem into the language of the theory of differentiable manifolds, we need 
another definition: we say that a Lagrangian system (M, L) admits the 
mapping h: M-» M if L(h^\) = L(v), for any tangent vector v G T(M); h+ 
denotes the derivative of h. Noether's theorem then states that if a Lagrangian 
system (M, L) admits the one-parameter group of diffeomorphisms hs: M-+ 
M, s G R, then the system of equations, corresponding to the Lagrangian 
function L, has a first integral / : T(M) -» R. In local coordinates q on M, the 
first integral I can be calculated by means of the formula 

Hamiltonian mechanics may be thought of as the geometry of the phase-
space, which has the structure of a symplectic manifold. For that reason, the 
study of Hamiltonian mechanics depends basically on the theory of differen­
tial forms. The phase-space can be seen as an even-dimensional differentiable 
manifold, M2/I, on which a symplectic structure <o2 has been defined. 

We can define an isomorphism /, mapping the cotangent bundle T£(M2n) 
to Tx(M

2n) as follows: with each vector u, tangent to a symplectic manifold 
(M2n, co2) at the point x, we associate a l-form <o„ on Tx(M

2n) by the rule 

< o » = <o2(v, u), Vv G Tx(M
2n). 

If H is a function on the symplectic manifold, then dH is a differential 
l-form on M2n, and at every point there is a tangent vector to M2n associated 
with it. In this way there is established on M2n, a Hamiltonian vector field 
IdH; H is called the Hamiltonian function of this vector field. The one-para­
meter group of diffeomorphisms gl

H: M2n -» M2n
9 defined by 

^ró*Lo - IdHW 
is called the Hamiltonian phase flow corresponding to H. It can be proved that 
a Hamiltonian phase flow preserves the symplectic structure, that the form 
co2, giving the symplectic structure, is an integral invariant of a Hamiltonian 
phase flow, and that the function H is a first integral of the Hamiltonian 
phase flow g#. 

Every pair of vector fields F, H on a manifold determines a new vector 
field, called the Poisson bracket (F, if), defined by the equation 

( F , / 0 ( X ) - - | F { ^ ( X ) } U . 

It is easily shown that a function F is a first integral of the Hamiltonian phase 
flow associated with H, if and only if (F, H) = 0, and that (F, H) is equal to 
the value of the l-form dF on the vector field IdH of the phase flow 
associated with H: 

(F,H) = dF(IdH). 
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The Poisson bracket operation makes the Hamiltonian vector fields on a 
symplectic manifold into a subalgebra of the Lie algebra of all fields. 

Lagrangian mechanics is, or course, contained in Hamiltonian mechanics 
as a special case-in which the phase-space is the cotangent bundle of the 
configuration space, and the Hamiltonian function is the Legendre transform 
of the Lagrangian function. 

The Hamiltonian approach enables us to solve completely a series of 
dynamical problems which do not yield solutions by other means, and has 
great value in establishing the approximate methods of perturbation theory in 
celestial mechanics, for analyzing the general character of motion in the 
complicated systems encountered in statistical mechanics, and in connection 
with optics and quantum mechanics. 

The two books under review-one written by a distinguished mathemati­
cian, the other by a distinguished theoretical physicist-are the first textbooks 
successfully to present to students of mathematics and physics, classical 
mechanics in a modern setting. 

The larger book is based on a year-and-a-half long required course on 
classical mechanics, taught by Arnold to third and fourth year students of 
mathematics in Moscow State University in 1966-1968. In it, the author 
develops-as he needs them-the many different mathematical concepts and 
techniques which lie at the foundations of classical mechanics. The reader is 
not assumed to have any previous knowledge beyond that contained in 
standard courses in analysis (calculus and differential equations), geometry 
(vectors and vector spaces) and linear algebra. The main text of the book (300 
pages) examines all the basic problems of dynamics, including the theory of 
small oscillations, the theory of the motion of a rigid body, and the Hamilto­
nian formalism, while 13 Appendices (155 pages) explore the connections 
between classical mechanics and other branches of mathematics. The material 
contained in these appendices did not form part of the required course and, 
whereas in the main body of the book Arnold has developed all the proofs 
without reference to other sources, the appendices consist on the whole of 
summaries of results, whose proofs are to be found in the cited literature. The 
final product is an attractive well-written book. 

The book by Thirring is, by contrast, much shorter though it aims to cover 
relativistic as well as nonrelativistic mechanics. It is the first volume of a 
textbook which presents mathematical physics in its chronological order, 
originating in a four-semester course given by the author in the Institute for 
Theoretical Physics in the University of Vienna to both mathematicians and 
physicists who in Thirring's words "were only required to have taken the 
conventional introductory courses". Thirring covers much the same mathe­
matical material as Arnold, but he restricts applications to nonrelativistic 
mechanics to particle dynamics. Of the six chapters in Thirring's book, two 
have no parallel in Arnold's. One deals with the relativistic motion of a point 
mass. The other, entitled "The Structure of Space and Time", seems to be out 
of place in a book entitled "Classical Dynamical Systems" although it 
undoubtedly contains much of value to a student of theoretical physics going 
on to the study of the theory of relativity. 

It is fascinating to compare the approaches of the two authors. The 
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mathematician has written a connected account of classical dynamics follow­
ing the pattern of previous treatises and discussing all the classic problems of 
the subject, stopping only to develop mathematical techniques as he needs 
them and therefore showing all the more clearly the historical links between 
mechanics and mathematical analysis. The physicist, on the other hand, has 
written a concise account of analysis on manifolds to which he has appended 
some few examples from particle mechanics. It is almost as though they had 
changed roles! 

Both books are well written (and the translation so idiomatic that it is easy 
to forget that they were originally written in Russian and German respec­
tively) but a student will undoubtedly find that Arnold's book presents the 
fewer difficulties of the two. Arnold's treatment of Hamiltonian systems is the 
superior and this is of great importance at a time when the Hamiltonian 
aproach is favoured in so many branches of applied mathematics. Anyone 
offering a course in advanced dynamics (at graduate level) would find both of 
these texts invaluable though students would find them difficult unless they 
had already attended a course based, for instance, on Chapters 9, 10, 11, and 
13 of [9]. Indeed the ideal approach might be to supplement this latter 
material with specific examples-and further general theory-taken from 
Arnold's book. It would amply demonstrate to young pure mathematicians 
that much of what they study in global analysis has its roots in physical 
problems of the past, and to their applied counterparts that modern pure 
mathematics can provide them with invaluable tools with which to develop 
general theories and tackle special problems. 
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Elliptic curves: Diophantine analysis, by Serge Lang, Grundlehren der 
mathematischen Wissenschaften, vol. 231, Springer-Verlag, Berlin-Heidel­
berg-New York, 1978, xi + 261 pp., $37.40. 

The study of the arithmetical properties of elliptic curves has been one of 
the most exciting areas of mathematical research for at least the past fifty 
years. It is customary to divide the modern theories according as one is 
dealing with rational points or with integer points; and both aspects of the 
subject can be regarded as having been initiated in 1922 by some remarkable 
discoveries of Mordell. 

It had long been known that the rational points on an elliptic curve, 
defined over the rationals, form a group T under a chord and tangent 
construction; Mordell proved that T has a finite basis. The proof was most 
ingenious. It began with a demonstration that the group r /2T is finite and 
then proceeded by a method of infinite descent (for references, see [5]). A 
far-reaching generalization of the finite basis theorem concerning abelian 
varieties was established by Weil in 1928; much important work arose 
therefrom, and an excellent survey of the subject as it existed in 1966 was 
given by Cassels [3], Here there are discussions of the celebrated conjectures 
of Birch and Swinnerton-Dyer, of the theorems of Lutz and Nagell, of the 
Tate-Shafarevich and Selmer groups, and of a great deal besides. In another 
direction, Mordell showed that the Diophantine equation 

y2 = ax3 + bx2 + ex + d (*) 

where a, b, c, d denote integers and the cubic on the right has distinct zeros, 
has only finitely many solutions in integers x,y. The proof involved the 
theory of the reduction of binary quartic forms followed by an application of 
a famous theorem of Thue (again, see [5]). Another proof, and indeed one 
that was applicable more generally to the hyperelliptic equation, was given by 
Siegel in 1926. Furthermore, in 1929, in a most profound work, Siegel 
succeeded in combining the Mordell-Weil theorem with a refinement of 
Thue's theorem that he had proved earlier, to show that any curve, defined 
over the rationals, with genus at least 1, has only finitely many integer points. 


