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provides a concise summary of material, called "functional support," to 
which the author refers in the remaining chapters on Padé approximants. 
Very few proofs are given for known classical results. Although it is question
able whether his new formulation of the concept of Padé approximants will 
be uniformly adopted, it seems certain that Gilewicz' treatment of the subject 
will be widely used and cited. 
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Barrelledness in topological and ordered vector spaces, by T. Husain and S. M. 
Khaleelulla, Lecture Notes in Math., vol. 692, Springer-Verlag, Berlin-
Heidelberg-New York, 1978, x + 258 pp. 

This book collects a vast number of facts that are scattered over the 
literature. Its subject can be divided into two more or less independent parts. 
The first part, which takes up about two thirds of the book, is concerned with 
topological vector spaces exclusively, and the second part with ordered 
topological vector spaces. This review will be divided into two parts accord
ingly. 

PART I. In the proof of the classical Banach-Steinhaus theorem and the 
closed graph theorem, the category argument is used to establish the follow
ing: 

(*) If U isjin absorbing, convex, circled subset of a Banach space E, then 
the closure U of U is a neighborhood of 0 in E. (For subsets A and B of a 
linear space, A is said to absorb B if there exists a positive number AQ such 
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that B c XA for all X > \Q. The set A is called absorbing if >4 absorbs each 
point of the linear space.) Recognizing that the class of locally convex (I.e.) 
spaces E for which statement (*) is valid is much larger than the class of 
Banach spaces, Bourbaki [1] turned (*) into a definition: A closed, absorbing, 
convex, circled subset U of an I.e. space E is called a barrel, and the space E 
is called barrelled if each barrel in E is a neighborhood of 0. 

True to expectation, barrelled spaces became the favorite domain spaces 
for various generalizations of Banach's closed graph theorem. The class of 
barrelled spaces is, in fact, the collection of all I.e. spaces suitable as the 
domain spaces in closed graph theorems. For, according to Mahowald [10], 
an I.e. space E is barrelled if and only if each linear transformation from E 
into an arbitrary Banach space is continuous provided the graph of the 
transformation is closed. Are there equally natural classes of range spaces? 
Let S be a family of I.e. spaces, and let 61(e) be the collection of all I.e. 
spaces F such that the closed graph theorem is valid for linear transforma
tions from an arbitrary member of S into the space F (i.e. a linear transfor
mation T: E -» F is continuous whenever E E 6 and the graph of T is 
closed). There has been much research done on <3l(éE), where & is the class of 
all barrelled spaces (e.g. A. P. Robertson and W. J. Robertson [12], and Ptâk 
[11]), and a definitive characterization of members of <3l(éE) was given by 
Komura [8]. However, more recent research shows that <3l(éB) can be substan
tially enlarged to include important I.e. spaces in applications by replacing ($, 
with the smaller class % of Banach spaces. Nor does this result in too drastic 
a loss of generality. For, if % denotes the class of all inductive limits of 
Banach spaces, then 6l(®) = 6l(<?l), and the class % is quite rich. (De 
Wilde, whose contribution to these developments is decisive, has written a 
very readable account of the subject [2].) 

The study of barrelled spaces, apart from its utility in formulating closed 
graph theorems, has also produced interesting results in itself in the past three 
decades. One of the most interesting of these results was proved compara
tively recently by Valdivia [15], and Saxon and Levin [14] independently. If a 
subspace (not necessarily closed) of a barrelled space is of countable codi-
mension, then it is again barrelled. (For subspaces of finite codimension this 
inheritance property was proved by Dieudonné [4].) But, in addition, the 
study of barrelled spaces has inspired studies of more general spaces-even of 
non-locally-convex analogs-and it is these more general spaces that form the 
subject of the first part of the book under review. 

In order to see how one can generalize barrelled spaces, let us recall that 
the notion of barrelled spaces was introduced by abstracting a part of the 
proof of the Banach-Steinhaus theorem. This theorem states that a subset of 
the dual of a Banach space is equicontinuous if it is weak* (i.e. pointwise) 
bounded. The conclusion of this theorem, in fact, characterizes barrelled 
spaces. An I.e. space E is barrelled if and only if each weak* bounded subset 
of the dual E' is equicontinuous. Thus the class of barrelled spaces E is 
characterized by the fact that the Banach-Steinhaus theorem is valid for E. 
By requiring properties weaker than the Banach-Steinhaus theorem, it is thus 
possible to define classes of I.e. spaces larger than the class of barrelled 
spaces. 
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Let us give some examples. 
(1) The class of spaces E such that the evaluation map of E into its second 

dual is continuous (a fact we take for granted for Banach spaces) is char
acterized by the property that each strongly bounded subset of E' is equicon-
tinuous (a subset of E' is strongly bounded if it is uniformly bounded on each 
bounded subset of E; clearly a strongly bounded set is weak* bounded). The 
space E with this property is called quasibarrelled. 

(2) The (<3) ^-spaces of Grothendieck [5] abstracting properties of the 
duals of metrizable I.e. spaces. An l.c. space is a (<3) $)-space if 

(a) there is a sequence {Bn: n G N} of bounded subsets of E such that 
each bounded subset is contained in some Bn and 

(b) a countable union of equicontinuous subsets of E' is again equicon-
tinuous provided it is strongly bounded. 

Condition (b) above is a much weakened form of the Banach-Steinhaus 
theorem. 

(3) Husain [6] defines two additional classes of l.c. spaces generalizing 
barrelled (resp. quasibarrelled) spaces: an l.c. space E is countably barrelled 
(resp. countably quasibarrelled) if a countable union of equicontinuous subsets 
of E' is again equicontinuous provided it is weak* (resp. strongly) bounded. 
Note that condition (b) in the definition of (^ ^-spaces is equivalent to E 
being countably quasibarrelled. In particular, the dual of a metrizable l.c. 
space is always countably quasibarrelled with respect to the strong topology, 
(i.e. the topology of uniform convergence on bounded subsets of E). 

So far we have only considered l.c. spaces. Are there non-l.c. analogs of, 
say, barrelled or quasibarrelled spaces? Definitions in terms of equicontinu
ous sets are inappropriate, for there are topological vector spaces with trivial 
dual. For l.c. spaces E9 however, the conditions on equicontinuous subsets of 
E' (i.e. Banach-Steinhaus-like properties) that we have mentioned can all be 
translated into conditions for barrels in E to be neighborhoods of 0. (Exam
ples: (1) The original definition of barrelled spaces was in terms of barrels; 
(2) the characterizing property of quasibarrelled spaces E is equivalent to: a 
barrel in E is a neighborhood of 0 if it absorbs each bounded subset of E) 
Though these conditions on barrels make perfect sense in arbitrary (not 
necessarily l.c.) topological vector spaces, for a non-l.c. space the conditions 
may have little to do with the topology, since barrels are convex by definition. 
To remedy this defect, Iyahen [7] introduced the notion of ultrabarrels (a 
notion anticipated in Robertson [13]). A closed, circled subset B0 of a 
topological vector space (E, 6ll) is called an ultrabarrel if there exists a 
sequence {Bn: n > 1} of closed, circled, absorbing subsets of E such that 
Bn + Bn c Bn_x for all n > 1 or, equivalently, if there exists a vector topol
ogy °V for E (i.e. a topology °\f with which E is a topological vector space) 
such that B0 is a T-neighbofhood of 0 and ^-closed T-neighborhoods of 0 
form a local base for T. Note that a barrel B is an ultrabarrel (just consider 
{2~nB: n > 1}), but not conversely-the prefix "ultra-" is misleading. Using 
ultrabarrels, it is possible to define analogs of barelled, quasibarrelled, count
ably barrelled and countably quasibarrelled spaces. For example, a topologi
cal vector space is ultrabarrelled if each ultrabarrel is a neighborhood of 0. 
(Note that an l.c. ultrabarrelled space is barrelled, but an l.c. barrelled space 
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need not be ultrabarrelled.) The theory of these "ultra-" spaces mimics that of 
the corresonding I.e. spaces, but it is not as rich. 

Let us now turn to the book under review. 
Chapter I (41 pages) is a review of basic notions and results from the 

theory of topological vector spaces and ordered topological vector spaces. All 
proofs are omitted in this chapter. Chapters II, V, and VI (103 pages total) 
are devoted to a study of various generalizations of barrelled spaces, includ
ing those discussed above. Chapters III and VII (35 pages total) treat those 
"ultra-" spaces mentioned above. The presentation of the material resembles 
that of an encyclopedia. There are headings (names of classes of topoogical 
vector spaces), and each heading is followed by a compendium of facts 
concerning the spaces in question. The writing is lucid, and the proofs are 
easy to follow, and, in most of the cases, self-contained. 

Our criticism of this part of the book concerns its organization. In a survey 
such as this, we might hope for a unifying point of view over the mass of 
results scattered in the literature published in the past thirty years, and we 
might also hope that the authors would take advantage of the progress made 
during the period by providing the readers with simpler proofs and more 
general theorems. This book does not meet our hopes. The rigid formal style 
militates against any real unity of presentation, and in too many cases the 
material is taken directly from the original papers without regard to better 
ways that are available elsewhere. 

Here are two examples of what we mean. 
EXAMPLE 1. The theorem of Valdivia and Saxon-Levin, which states that 

the property of being barrelled is transmitted to subspaces of counable 
codimension, appears as Theorem 9 in Chapter II with Valdivia's proof [15]. 
The proof of the analogous fact for countably barrelled spaes, due to Webb 
[17], appears in Chapter V. This proof uses Lemma 1 of the next chapter 
(Chapter VI). The analogous theorem for a-barrelled spaces, due to Levin and 
Saxon [9], is proved in Chapter VI. The proof uses Lemma 1 again. 

Now this Lemma 1 is also the major step in the Saxon-Levin proof of 
Theorem 9, Chapter II (a proof quite different from Valdivia's proof given in 
Chapter II). It would have been clearer and more economical to treat the 
subject of subspaces of countable codimension in one place instead of 
spreading it out with much redundancy over three separate chapters. 

Also the key lemma-Lemma 1, Chapter Vl-is given the original proof of 
[14]. And the authors add that a shorter proof is available in [17]. Why did 
they reject the delightful proof in [17] in favor of a much longer one? 

EXAMPLE 2. Grothendieck's theorem on the localization of the topology in 
(̂ D ^-spaces [5, Theorem 3] is given in Chapter II with the original proof. 
Yet in Chapter V a more general theorem with a subtler proof due to 
De Wilde and Houet [3] is presented. This theorem of De Wilde and Houet on 
countably barrelled spaces, besides being of interest in itself, is a common 
generalization of Grothendieck's theorem on (^ ^-spaces [ibid] and 
Valdivia's theorem on barrelled spaces [15, Theorem 5]. This point seems to 
be ignored. Why? 

PART II. Chapters IV, VIII, and IX (65 pages total) of the book treat 
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ordered topological vector lattices for the most part, while referring occasion
ally to more general ordered topological vector spaces. 

Let (E, C, %) be an ordered topological space (i.e. (E, %) is a real 
topological vector space, and E has a partial ordering > compatible with the 
linear structure of E, with C = {x: x > 0}). A subset B of E is called 
order-bounded if there exist x and y in E such that x < z < y for all z in B. 

If in the earlier discussion of topological vector spaces one replaces 
"bounded" with "order-bounded", one obtains various new classes of ordered 
topological vector spaces. For example, an ordered I.e. vector lattice E is 
called order-quasibarrelled if each barrel in E is a neighborhood of 0 provided 
it absorbs each order-bounded subset of E (this class was introduced by 
Wong [18]; see also [19]). The authors go on to define more and more 
complicated classes of ordered spaces with correspondingly longer names. 
(Our favorite is "countably order-quasiultrabarrelled vector lattices", which 
appears-all too briefly-in the heading of Chapter VIII.) As in the first part, 
the presentation of the material is formal, with emphasis on a multiplicity of 
definitions and elementary properties. 
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