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A decade ago the term "applied mathematics" was synonymous with 

mathematical physics and fluid mechanics. The tools of the "applied mathe
matician" were differential and integral equations, integral transforms, 
numerical analysis and a touch of optimization theory. If someone wanted to 
apply algebraic or differential geometry, several complex variables, operator 
theory, functional analysis or any of the several fields of algebra, it wasn't 
"applied mathematics". Of course, it wasn't pure mathematics either, nor was 
it science or engineering. Fortunately, during the past decade the applied 
mathematician has come in out of the cold with the emergence of the 
mathematical theory of networks and systems in which each of the above 
topics has found significant applications. 

Although the field has evolved far beyond the point of exposition in a 
single volume,1 Dolezal's text is representative of the operator theoretic 
approach to the mathematical theory of networks and systems [2], [8], [12], 
[13]. Intuitively, a system is a "black box" whose inputs and outputs are 
functions of time (or vectors of such function). As such, a natural model for 
the system is an operator defined on a function space. This observation and 
its corollary to the effect that system theory is a subset of operator theory, 
unfortunately, proved to be the downfall of the early researchers in the field. 
The projection theorem was used to construct optimal controllers which 
proved to be unstable, operator factorizations were used to construct 
stochastic filters which were unrealizable, and unitary extension theory was 
used to construct lossless networks which were noncausal. 

The difficulty lies with the fact that the operators encountered in system 
theory are defined on spaces of time functions and, as such, must satisfy a 
physical realizabiUty (or casuality) condition to the effect that the operator 
cannot predict the future. Although this realizabiUty condition usually takes 
care of itself in the analysis problems of classical "applied mathematics" it 
must be externally imposed on the synthesis problems which play the key role 
in system theory. Indeed, since the causal operators are not closed under 
inversion or adjoints, even if one begins with realizable system specifications, 
the system synthesized therefrom may fail to be realizable if either an adjoint 
or an inverse is employed in the derivation. 

If F and G are spaces of functions defined on a linearly ordered time set, 
we say that W: F-> G is causal (realizable) if whenever 

ƒ.( ')=/2( ')> '<*» (i) 
then 

[Wi](0 =[Wf2](t), t<s. (2) 
'For a review of the overall field see any of the three recent journal special issues in the area 

[5], [6J, [10]. 
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This implication corresponds to the usual physical interpretation of causality 
to the effect that W cannot predict the future. Moreover, it characterizes 
convolutional kernels with support on the half line, lower triangular Toeplitz 
matrices, Volterra operators, and multiplication by a function in H °° and is 
thus no stranger to the mathematician. Unfortunately, this simple function 
space definition does not abstract to the topological vector spaces commonly 
used in operator theory wherein the concept is undefined. As such, even 
though a system may be naturally modeled as an operator on a function 
space the classical theorems of operator theory are incapable of coping with 
the realizability conditions required for a meaningful system theory and have 
thus had little impact on the subject. 

This realizability problem can be overcome by incorporating a resolution of 
the identity into the topological vector space on which the system is defined 
[2], [12], [13], which, in turn, allows one to define a causal system (operator). 
Indeed, once this is achieved one discovers that the causal operators on a 
Hilbert space form a nest algebra [11] which is invariant on an appropriate 
chain of subspaces. As such, both the theory of nest algebras [11] and the 
theory of triangular operators [1], [3] may be invoked in support of the system 
theorist. With this observation the operator theoretic approach to the theory 
of networks and systems was off and running and a number of researchers set 
out to formulate a unified theory of linear networks and systems via operator 
theoretic techniques. At the present time this theory is reaching maturity [5], 
[6], [10] and much to the surprise of the early practitioners of the art 
(including this reviewer) a considerable theory of nonlinear networks and 
systems has been developed along the way [8], [13]. 

DolezaPs text represents the first exposition in book form of the resultant 
nonlinear system theory. The text is built around three major chapters dealing 
with monotone operators, the analysis of feedback systems, and the analysis 
of electric networks. By a monotone operator, W, we refer to a (possibly 
multivalued) operator defined on a Hilbert space such that 

<Wfl-Wf2Jl-f2>>0 (3) 

for all fx and f2 in the domain of W. As such, the concept may loosely be 
viewed as an extension of the class of operators with positive derivative. With 
respect to the present application, such an operator is a natural model for a 
passive electric network and the slope restricted nonlinearities commonly 
used in control theory [13]. Of course, one can define a number of variations 
on the theme obtaining strictly or strongly monotone operators, causal 
monotone operators, etc. Each of these classes is formulated in the text and 
their fundamental properties delineated. 

In the system theory literature a feedback system is typically represented 
by a block diagram such as that shown below. Here the black box denoted by 
P represents a plant; an aircraft, an electric generator, a chemical process, 
etc., which is to be controlled by the compensator, C. Typically, the plant is a 
large piece of hardware whose characteristics have been predetermined and it 
is the responsibility of the systems engineer to design a compensator which 
will make the plant behave in a prescribed manner. To this end the engineer 
has considerable control over the design of the compensator, C, which may 
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be implemented in hardware or simply as a program for a control computer. 
Whatever form it takes the compensator observes the difference between the 
reference input to the system, r, and the plant output, y, and uses this data to 
determine the plant input. For instance, r may represent the desired route for 
an aircraft and y the actual route in which case C computes a control input 
(to the elevator, flaps, rudder, etc.) which will compensate for any deviation 
between the desired and actual route. 
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FIGURE 1. Typical block diagram. 
From a mathematical point of view the block diagram of Figure 1 can be 

summarized by the pair of equations 

y - Pu (4) 

and 

u=C{r-y) (5) 
where r, u, and y lie in a Hilbert (Banach) space, H, and P and C are 
operators on H? The basic questions of feedback system analysis then reduce 
to 

(i) When does the feedback system (i.e. equations (4) and (5)) define a 
mapping Tsuch that>> = 7>? 

(ii) When T is well defined what are its properties? Is it stable? Is dT/dP 
sufficiently small? etc. 

Indeed, the answers to these questions and the converse question of 
designing a compensator, C, for a given plant, P9 which will cause T to have 
certain prescribed properties, are the essence of feedback theory. The present 
text resolves many of the basic problems of feedback system analysis in the 
case where P and/or C are monotone operators. Dolezal, however, makes 
only a minimal attempt to go beyond the monotone case nor does he even 
formulate, let alone resolve, the much deeper feedback system design prob
lem. 

Although an electric network is typically represented by a schematic 
diagram which is quite unlike the block diagram of Figure 1 and DolezaFs 
mathematical abstraction is equally unlike equations (4) and (5), the mathe
matical theory of networks is, in fact, quite similar to the above described 
feedback system theory. Following Dolezal an abstract network is an ordered 
triple [Z, N9 M] where Z is a (possibly multivalued) operator on a Hilbert 
space, H, and M and N are complementary subspaces in H. Physically, M 
and N represent spaces of admissible voltage and current vectors, respectively 
(i.e., vectors satisfying appropriate generalizations of the Kirchhoff voltage 

2More generally, we may take r and y to be in H1 and u to be in H2 with C mapping Hl to 
H2 and P mapping H2 to Hl. 
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and current laws), while Z represents a component impedance operator which 
is passive if Z is monotone. Given a vector e 6 l f , a vector i G N is termed a 
solution of the network if there exists v G H such that v = Zi and v — e Œ 
M. 

Given the above definition one may formulate and resolve a number of 
problems in abstract network theory. 

(i) When does an abstract network have a solution? 
(ii) When an abstract network admits a solution, what are its properties? Is 

it causal? Can it be viably approximated by a linear network? etc. 
With the aid of appropriate monotonicity assumptions on Z most of the 

above questions are resolved in the text. Moreover, it is shown that the 
resultant abstract network theory subsumes the classical network analysis 
problem and most of the infinite network theories which have been proposed 
during the past decade [4], [14]. As such, DolezaPs chapter on Monotone 
Networks represents a significant contribution to the literature on passive 
network analysis. 

In addition to its three major chapters the text contains four short chapters 
in which certain technical questions are resolved. Most importantly, Chapter 
3 develops the theory of operators defined on an extended Hubert space [13]. 
Like the introduction of the resolution structure which allowed the concept of 
causality to be formalized, the development of the extended space concept 
was one of the key contributions which made possible today's mathematical 
theory of networks and systems. Simply stated the early researchers in the 
field were faced with a fundamental dilemma. If their system theory was to 
take advantage of the existing theory of operators it necessarily must be 
formulated in a normed space. On the other hand, if unstable systems were to 
be included in the theory unbounded signals must be allowed. To achieve the 
best of both worlds, the given normed space on which the system was defined 
was embedded in an appropriately constructed extension space which in
cluded unbouned signals. Moreover, the extension was constructed in such a 
way that any causal operator on the normed space could be uniquely lifted to 
the extension space [13]. This, in turn, allowed for the possibility of unstable 
systems in a system theory defined on a normed space. 

In summary, the present text represents the first attempt at an exposition of 
the operator theoretic approach to system theory to emphasize nonlinear 
systems. Although the exposition on the feedback systems is incomplete the 
exposition on passive network analysis is excellent. Moreover, the text devel
ops most of the fundamental tools and techniques which are required by a 
researcher in the field. As such, it represents an ideal starting point for 
someone interested in initiating a research program in the area. Since the use 
of advanced operator theoretic techniques is kept to a minimum the text is 
suitable for a graduate course for students (in mathematics or engineering) 
with a real analysis background. 
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Gaussian random processes, by I. A. Ibragimov and Yu. A. Rozanov, Applica
tions of Math., volume 9, Springer-Verlag, New York-Heidelberg-Berlin, 
1978, x + 276 pp., $24.80. 

A Gaussian law (= probability measure) P on a finite-dimensional vector 
space V is of the form dP{x) = exp(-g(x)) dxJy where g is a quadratic 
polynomial and dxj is Lebesgue measure on a linear variety (affine subspace) 
/ . Such laws, also called normal, are staples of multivariate statistics ([1], [34], 
[43]), along with their relatives such as Wishart distributions. 

Let EX = fX dP, the mean of the (vector or scalar) X. In the rest of this 
review Gaussian laws will all have mean 0 unless otherwise stated. If A, B, C 
and D are any four linear forms on V, then EÇ4BCD) = E(AB)E{CD) + 
E(AC)E(BD) + E(AD)E(BC). So, E(A4) « 3E(A2)2, the first of a sequence 
of identities which characterize Gaussian laws on R1. 

Given a probability space (£2, ®, Pr) and any set T7, a Gaussian process is 
any real function X on T X £2 such that for each finite set F c T, 
{x(t> ')}teF h a s a Gaussian law on RF. Let X(t) s= X(t, •)• 

If T is a Hilbert space H, the isonormal Gaussian process L maps H 
isometrically into an L2(Q, Pr), with EL(x, -)L(y, •) = (x,y), the inner pro
duct; this fixes the laws of L. For any Gaussian process X, there is a F with 
the same laws and Y(t, co) = L(g(t% (o), where g maps T into some Hilbert 
space H. So L is the Gaussian process [13]; it clothes a pristine Hilbert space 
in full Gaussian attire. 

Trajectories. Probabilists like to pick an <o and follow the wandering path, 
or sample function, t -» X(t, <o) ([3], [13], [20], [48]). The speed at which 
exp(- x2/2) goes to 0 as x -* oo lets us make (almost) all paths continuous if 
g(T) in H is compact enough. If T = R, the process X is called stationary if 
all its laws are preserved by translations t->t + h. For a stationary X 


