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A Gaussian law (= probability measure) P on a finite-dimensional vector 
space V is of the form dP{x) = exp(-g(x)) dxJy where g is a quadratic 
polynomial and dxj is Lebesgue measure on a linear variety (affine subspace) 
/ . Such laws, also called normal, are staples of multivariate statistics ([1], [34], 
[43]), along with their relatives such as Wishart distributions. 

Let EX = fX dP, the mean of the (vector or scalar) X. In the rest of this 
review Gaussian laws will all have mean 0 unless otherwise stated. If A, B, C 
and D are any four linear forms on V, then EÇ4BCD) = E(AB)E{CD) + 
E(AC)E(BD) + E(AD)E(BC). So, E(A4) « 3E(A2)2, the first of a sequence 
of identities which characterize Gaussian laws on R1. 

Given a probability space (£2, ®, Pr) and any set T7, a Gaussian process is 
any real function X on T X £2 such that for each finite set F c T, 
{x(t> ')}teF h a s a Gaussian law on RF. Let X(t) s= X(t, •)• 

If T is a Hilbert space H, the isonormal Gaussian process L maps H 
isometrically into an L2(Q, Pr), with EL(x, -)L(y, •) = (x,y), the inner pro
duct; this fixes the laws of L. For any Gaussian process X, there is a F with 
the same laws and Y(t, co) = L(g(t% (o), where g maps T into some Hilbert 
space H. So L is the Gaussian process [13]; it clothes a pristine Hilbert space 
in full Gaussian attire. 

Trajectories. Probabilists like to pick an <o and follow the wandering path, 
or sample function, t -» X(t, <o) ([3], [13], [20], [48]). The speed at which 
exp(- x2/2) goes to 0 as x -* oo lets us make (almost) all paths continuous if 
g(T) in H is compact enough. If T = R, the process X is called stationary if 
all its laws are preserved by translations t->t + h. For a stationary X 
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restricted to a finite interval T, Fernique ([19], [20]) proved that "compact 
enough" can be exactly measured by Kolmogorov's metric entropy: if you 
need N(e) points to get within c of all points of g(T), then convergence of 
Jo(log N(u))ï/2 du characterizes path-continuity (and is sufficient also for 
nonstationary Gaussian processes [13]), provided g is continuous. 

Sudakov [55] characterizes sample continuity in terms of a mixed volume of 
infinite-dimensional convex sets. For some other recent sample function 
results see, e.g., [11], [12], [48]. 

General parameters. As knowledge of X(t) for real t becomes refined, 
attention turns toward multidimensional t ("random fields") and to linear 
processes X(f, •) on spaces of test f unctions ƒ ("generalized random fields"), 
where the connecting idea is X(ƒ, co) = ƒX(t, u*)f(t) dt. For one class of these, 
let EN(f)N(g)~ = j{^f){^g)~ d\i where °J denotes Fourier transform and /A 
is a nonnegative tempered measure. If dii(y) = dy/(m2 + \y|2) for some 
m > 0, Af is called a Nelson process, studied in quantum field theory ([8], [21], 
[44], [45], [50]). 

Since a Gaussian process Xt (with mean 0) is characterized by its covari-
ance EXsXr one can look for covariances preserved by groups of isometries 
of symmetric spaces [2]. 

Abstract Wiener spaces and reproducing kernels. The process L on a Hubert 
space H is not of the form L(h, to) = (h, M(co)) with Af(co) E H (L is not 
sample-continuous). But if we restrict h to a dense, but small enough Banach 
subspace, we can take M(oo) E B for any large enough Banach space B which 
is the completion of H for a small enough norm. L. Gross named such norms 
measurable; the arrangement (H, B) is called an abstract Wiener space, and 
seems to provide the best available substitute for Lebesgue measure in doing 
analysis on infinite-dimensional spaces ([9], [10], [15], [22], [23], [24], [25], [37], 
[38], [40], [47]); notable is Gross' logarithmic Sobolev inequality [25]. Con
versely, given B, there is an H: if P is a Gaussian law on a Banach space B, 
then there is a natural bounded linear map j of the dual B' into the Hubert 
space J = L2(B, P). The adjoint j * takes J onto a subspace H c B c B". 
This H is the reproducing kernel Hubert space RKHS(P). These notions 
extend to spaces of sections of a vector bundle [4]. 

The Banach norms and spaces are, of course, not /f-unitarily invariant. But 
one can think of the Gaussian measure "on / / " as concentrated on an 
infinite-dimensional sphere (surface) of radius VocT, equipped with a Lapla-
cian, spherical harmonics, etc. [42]. 

Analysis of functional. For an orthonormal basis {en} of a Hubert space 
Hl9 the L(en) are independent, identically distributed standard Gaussian 
variables Xn. Let H := L2(ïï, P) be the space of all complex-valued functions 
ƒ = f(Xl9 X2,... ) with E\ f\2 < oo (equivalence classes of measurable func
tions, actually). Then H is a countable orthogonal direct sum ©^°=0//(/l), 
where H{n) = K(n) © © j=oH(j) an(* KU) *s ^ e s e t °^ a^ J^1 degree (or less) 
polynomials in the L(x), x E H. Let %n be the n-fold symmetric tensor 
product of Hx with itself, spanned by elements 

sym(x! ® • - • ®xn) := (n\)~l S **o ® * ' • ®**(*)> 
7re5(/i) 
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where S(n) is the symmetric group of all permutations of { 1 , . . . , n). Let 
h -» :A:(rt) denote the orthogonal projection of H onto /f(w). Then for each w, 
there is a map Ln such that for all xl9..., xn G H, Ln(sym(x{ ® • • • ®xn)) 
= :L(x!) . . . L(xn):(w). For some constant cn, cnLn is an isometry of %n onto 
/f(w). This structural theory, developed by Wiener [56], von Neumann, 
Kakutani [36], and Segal [51], is quintessentially Gaussian; for expositions 
and more recent work see Neveu [46, Chapter 7], Hida [31], [32], Linnik [39], 
Guichardet [26], and Gutmann [27]. 

For a bounded linear operator A from Hx into itself and each n9 A 
® • • • ®A (n factors) maps %n into itself. If \\A\\ < 1, then these operators, 
via the above isometries, define a contraction T(A) from H into itself. Nelson 
[45] proved a sharp inequality: ifl<p<r<oo and \\A\\ < ((p - l)/(r — 
1))1/2, then T(A) is a contraction from Z/(Q, P) into 2/(0, P). 

Inequalities. Slepian [54] proved that if EXf = EYf and JEX;A) < EYêYj for 
all /,7 then supjJf, is stochastically larger than supjY,. Several inequalities 
relate Gaussian laws and convex sets ([6], [7], [49]). Pitt [49] proved P(A n B) 
> P(A)P(B) for P Gaussian and A and B symmetric convex sets in R2 (for 
R", it's a conjecture). Some inequalities follow from the logarithmic concavity 
of Gaussian densities (e.g. [7]); others, from rotational invariance (e.g. [16]). 

Equivalence and singularity. Hajek [28] proved that two Gaussian laws P 
and Q on a vector space are either singular or equivalent (mutually absolutely 
continuous). Here P and Q are equivalent if and only if the "/-divergence" 
(EP - EQ)log(dP/dQ) is finite; it is the supremum of its finite-dimensonal 
analogues. Using our general representation of Gaussian processes, nonde-
generate P and Q can be written as affine transformations of each other, say 
dQ(x) = dP(Ax + m); Segal [51] showed for the isonormal process, and 
Feldman ([17], [18]) proved in general, that P and Q are equivalent if and 
only if m G / = RKHS(P), and A = I + B where B restricted to / is a 
Hilbert-Schmidt operator into / , with — 1 not in its spectrum. Then A is 
extended from / to the larger space by continuity. So to find the relations of 
infinite-dimensional Gaussian laws, it helps to be able to recognize Hilbert-
Schmidt operators in specific Hubert spaces. From L2(/x) to L\v) they are 
just given by L2(fi X v) integral kernels. For later work on singularity, 
equivalence, and Radon-Nikodym densities, see e.g. Shepp [53] and the book 
under review. 

Prediction. A stationary Gaussian process X(t9 •) gives a one-parameter 
unitary group Uh: X(t)->X(t 4- A), acting on the Hubert space(s) of the 
process. There is then a finite measure [i on R, called the spectral measure, 
such that there is a linear isometry of L2(R, /x) into L2(Q, P) taking (x -» eitx) 
to X(t). Prediction and filtering of such processes are concerned with the 
closed linear spans XA of {X(t): t G A) for subsets A; or equivalently, with 
spans of {eitx: t E A} in L2(R, /A): a matter of harmonic analysis. Classical 
prediction theory takes A = [ — oo, s], Dym and McKean [14] treat this and 
other cases. 

The review. Ibragimov and Rozanov's book actually treats three topics on 
stationary Gaussian processes (cf. also [30]): 1) singularity and equivalence, 
and calculation of densities (Radon-Nikodym derivatives) in case of equiva
lence; 2) in prediction, to find spectral measures p for which X is "regular" or 
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"completely nondeterministic" in the sense that PI w^j-«,,-«] — {0}> and to 
study "mixing rates" for such processes; 3) in statistics, to estimate the mean 
ƒ(/) of a process X(t, •) + f(t) ("filtering", cf. [35]). The list of references at 
the end of the book contains 28 items, mostly standard textbooks in analysis; 
23 papers are cited in footnotes scattered through the volume. 

Bits. Electrical engineering and information theory have, since Wiener's 
fruitful intermediation, been in contact with Gaussian processes; recently 
flourishing related work is surveyed in [5] (level crossings), [35] (filtering), and 
[57]. 

A goodly number of functional limit theorems give Gaussian processes as 
limits-but that's another story. 

Reviews and bibliography. So far, authors of books and surveys have not 
tried to encompass the whole subject. Neveu [46] gave what is still the largest 
Gaussian bibliography, as far as I know, with some 600 items. Jain [33] and 
Marcus [41] gave courses. Each annual index of Mathematical Reviews 
currently lists between 50 and 100 papers on Gaussian processes (60G15). Of 
the 57 references below, 20 are themselves surveys or monographs, many of 
which have extensive bibliographies. 
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Foundations of mechanics. Second Edition, Revised and enlarged, by Ralph 
Abraham and Jerrold E. Marsden, The Benjamin/Cummings Publishing 
Company, Reading, Mass., 1978, xxii + 806 pp., $39.50. 

1. This excellent book is one of several superb books on mechanics which 
have appeared in the past decade, such as those of Souriau [10], Siegel-Moser 
[9], Arnold [2] and Thirring [13], indicating a revitalized interest in the 
venerable subject of classical mechanics. Actually, there have been at least 
three sources of revitalization in the past forty years. The first came from the 
solution of the "small divisor problem" in celestial mechanics. The 
breakthrough here was achieved by Siegel in a mathematical tour de force, 
and then a new powerful general principle was discovered by Kolmogorov 
and developed in the hands of Arnold and Moser into a major analytical tool. 
The second came from the study of geometric properties of mappings and 
flows, especially in their "generic" behavior. The guiding philosophy had 
come from the foundational work in differential topology of Whitney and 
Thorn, and was developed by Smale, Anosov, Sinai and their schools. More 
recently, there has been an influx of new ideas coming from group theory, 
from the work of Kirilov and Kostant in representation theory, and of 
Souriau, in rethinking the physical and geometrical principles underlying 
mechanics. As the bulk of the material added in the second edition deals with 
this last topic, I will concentrate my attention on it. 

Much, but not enough, has been written about the philosophical problems 


