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1. This excellent book is one of several superb books on mechanics which
have appeared in the past decade, such as those of Souriau [10], Siegel-Moser
[9], Arnold [2] and Thirring [13], indicating a revitalized interest in the
venerable subject of classical mechanics. Actually, there have been at least
three sources of revitalization in the past forty years. The first came from the
solution of the “small divisor problem” in celestial mechanics. The
breakthrough here was achieved by Siegel in a mathematical tour de force,
and then a new powerful general principle was discovered by Kolmogorov
and developed in the hands of Arnold and Moser into a major analytical tool.
The second came from the study of geometric properties of mappings and
flows, especially in their “generic” behavior. The guiding philosophy had
come from the foundational work in differential topology of Whitney and
Thom, and was developed by Smale, Anosov, Sinai and their schools. More
recently, there has been an influx of new ideas coming from group theory,
from the work of Kirilov and Kostant in representation theory, and of
Souriau, in rethinking the physical and geometrical principles underlying
mechanics. As the bulk of the material added in the second edition deals with
this last topic, I will concentrate my attention on it.

Much, but not enough, has been written about the philosophical problems
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involved in the application of mathematics, and particularly of group theory,
to physics. There is the celebrated paper of Wigner [15] with whose thoughts I
wholeheartedly agree; yet for all its eloquence it leaves much unsaid. On the
one hand, mathematics is created to solve specific problems arising in
physics; on the other, the mathematics provides the very language in which
the laws of physics are formulated. One need only think of calculus or of
Fourier analysis as examples of this dual relationship. A third example is
provided by Hamiltonian mechanics. We are all familiar with the exploitation
of symmetry in the solution of a mathematical problem. On the other hand,
the very assertion of symmetry is often the profoundest formulation of a
physical law, or the key step in the development of a new theory.

The mathematical theory underlying Hamiltonian mechanics is currently
called symplectic geometry. We briefly recall the basic definitions and the
early history. A symplectic vector space is a real vector space equipped with
an antisymmetric, nondegenerate bilinear form. For example, on R?> we can
define the form (, ) by (u;, u)) = q,p,~¢,p, where u; = ({!) and u, = (). It
is not hard to see that such a vector space must be even dimensional (if finite
dimensional). A linear isomorphism of a symplectic vector space, ¥ (or more
generally of ¥ onto W), is called symplectic if it preserves the bilinear form.
(In two dimensions, a linear transformation is symplectic if and only if its
determinant is one. In higher dimensions, the condition is more restrictive.) A
differentiable map of an open subset of a symplectic vector space V into V is
called symplectic if its (Jacobian) matrix of partial derivatives is symplectic at
every point. A symplectic manifold M is an even-dimensional manifold which
locally has the structure of a symplectic vector space. This means that one has
local charts ; mapping open sets U; of M onto open subsets of some fixed
symplectic vector space V, and such that the change of coordinates maps
Y ° \pj" (defined on Y(U; N U))) are symplectic. (Alternatively, thanks to a
theorem of Darboux, a symplectic manifold is a manifold together with a
closed two form of maximal rank.) One has the obvious definition of
symplectic diffeomorphisms (i.e. one-to-one smooth transformations with
smooth inverse, which are locally symplectic in the above sense). In the older
literature, symplectic diffeomorphisms were called canonical transformations.
Symplectic geometry is the study of symplectic manifolds and diffeomor-
phisms. The relation with mechanics is usually expressed by saying that the
“phase space” of a mechanical system is a symplectic manifold, and the time
evolution of a (conservative) dynamical system is a one parameter family of
symplectic diffeomorphisms. The role of the symplectic structure had first
appeared, at least implicitly, in Lagrange’s work on the variation of the
orbital parameters of the planets in celestial mechanics. But its central
importance emerged from the work of Hamilton.

At the age of eighteen, Hamilton submitted a paper entitled “Caustics™ to
Dr. John Brinkley, then the first royal astronomer for Ireland, who, as a
result, is said to have remarked “This young man, I do not say will be but is
the first mathematician of his age”. Brinkley presented the paper to the Royal
Irish Academy. It was referred as usual to a committee whose report, while
acknowledging the novelty and value of its contents, recommended that it
should be further developed and simplified before publication. Five years
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later, in greatly expanded form, the paper finally appeared, entitled “Theory
of systems of rays” published in 1828 in the Transactions of the Royal Irish
Academy. The gist of Hamiltonian optics, in modern language, is as follows:
One is interested in studying the geometry of rays of light as they pass
through some optical system. Suppose our system is aligned along some axis,
and we study rays which enter the system at the left and emerge from the
right. The portion of the rays to the left of the system are straight line
segments. One needs four variables, locally, to specify such a line-two
variables to specify the point of intersection of the line with a plane per-
pendicular to the optical axis, and two additional angular variables giving the
inclination of the line to this plane. The problem is to relate the incoming line
segments to the left of the system to the outgoing line segments to the right.
The first basic assertion is that if we use the right coordinates (which involve
the index of refraction of the ambient space) the transformation from the
incoming to the outgoing coordinates is a symplectic diffeomorphism. Thus
geometrical optics is reduced to symplectic geometry. Hamilton shows that if
the graph of a symplectic transformation satisfies an appropriate transversal-
ity condition, then the transformation determines and is determined by a
function of half the incoming and outgoing variables, the so called generating
function of the symplectic transformation. As this function is determined
solely by the physical properties of the optical system, Hamilton calls it a
characteristic function. Depending on the transversality assumptions made, it
can be a function of the points of intersection of the incoming and outgoing
rays with the transversal planes—the point characteristic, the incoming points
of intersection and the outgoing angles—the mixed characteristic, or the
incoming and outgoing angles—the angle characteristic. These functions are of
use in combining optical systems, i.e. in composing the corresponding sym-
plectic transformations. They are also extremely useful in describing the
deviation of the symplectic transformations from linearity—the “geometric
aberrations” of the optical system. Finally, they are closely related to the
“optical length” of the light rays themselves, and these light rays can be
characterized as being extremals for optical length—“Fermat’s principle”. See
[4, Chapter 111}, for a modern discussion of these ideas and their applications
in optics. Some years later Hamilton realized that this same method applies
unchanged to mechanics: replace the optical axis by the time axis, the light
rays by the trajectories of the system, and the four incoming and four
outgoing variables by the 2n incoming and outgoing variables of the phase
space of the mechanical system. Hamilton’s methods, as developed by Jacobi
and other great nineteenth century mathematicians, became a powerful tool
in the solution or analysis of mechanical problems. Hamilton’s analogy
between optics and mechanics served as a beacon to the development of
quantum mechanics some one hundred years later.

One of the key new ideas that Hamilton introduced into mechanics is that
one must consider the most general symplectic transformations of phase
space. Lagrange had already introduced the notion of “generalized coordi-
nates”. In modern terminology this means that one should consider a possible
configuration of a mechanical system as a point in a differentiable manifold,
and, of course, then use any system of local coordinates which are con-
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venient. The corresponding phase space is currently called the “cotangent
bundle” and is denoted by T* M where M is the manifold. It carries a natural
symplectic structure. If ¢ = (q,, . . . , g,) are local coordinates on an open set
U of M, then (¢,p) =(qy, -+ -5 Py - - -5 Py) are local coordinates sitting
over U in T*M and provide a symplectic chart. Lagrange allows any change
of the g coordinates (which then induce a change in the p coordinates as
well). Hamilton allows any symplectic coordinates on 7*M, a coordinate
change that might mix the ¢’s and the p’s. It is a consequence (a version
really) of Darboux’s theorem that any symplectic manifold looks locally like a
T* M. 1t is rather surprising that it is only in the past ten years that the next
small step was seriously considered, that one should use general symplectic
manifolds, which are not necessarily globally cotangent bundles, in the
formulation of mechanics. This step was suggested by Bacry, Kostant and
others, but first fully developed with its physical implications by Souriau.

To give a taste of how group theory, combined with symplectic geometry,
can give some physical insight, let us return to Hamilton’s optics. The
incoming or the outgoing data, or the data at any plane of the optical system,
are ways of parametrizing the light rays. The fact that the transformation
from one set of data to another is symplectic can be reformulated as saying
that the space of light rays of an optical system carries a natural symplectic
structure. (This is the point of view that Souriau consistently maintains
towards mechanics.) Let us consider the simplest possible optical system—one
with no lenses, no varying index of refraction, just empty space with a
constant index of refraction. The light rays are then straight lines. The space
of straight lines in Euclidean three space is a four-dimensional manifold,
upon which the group of Euclidean motions acts transitively. The symplectic
structure should be invariant under the Euclidean group. So we can pose the
following question: what are the possible symplectic structures on the space
of lines which are Euclidean invariant. Thanks to the work of Kirilov,
Kostant, and Souriau, this kind of question has a completely general answer.
Given any Lie group, there is a standard procedure for finding all the
symplectic manifolds on which the group acts tranmsitively. If the group
satisfies a certain mild cohomological restriction, and all the Euclidean
groups in three or more dimensions do, the answer is as follows. Let G be the
group and g its Lie algebra. The group G acts on g via the adjoint representa-
tion. (Think of G as a group of matrices and g as the space of those matrices
X such that exp ¢tX is in G for all . Then A € G acts on X € g by sending it
into AXA ~'.) If Ad, denotes the transformation of g corresponding to 4, and
if p € g* is a linear function on g, define 4 - p by (4 - p)(X) = w(Ad,-X). In
the language of group theory, this defines the contragredient representation
on the dual space g* of g. Let G- p = {4 - u, A € G} be the G orbit through
u. Then this orbit, G - p, carries a natural, G invariant, symplectic structure.
Furthermore, these are all the transitive symplectic G spaces in the sense that
any symplectic manifold on which G acts transitively is a covering space of
some such orbit by a covering map which is locally a symplectic diffeomor-
phism. For semidirect products such as the Euclidean group, there is a simple
recipe for describing the orbits, cf. [12] or [3, Chapter IV, §7]. Applied to the
three-dimensional Euclidean group, the answer is as follows: There is a two
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parameter family of four-dimensional orbits, a one parameter family of
two-dimensional orbits, and a single zero-dimensional orbit (the origin). Each
of the four-dimensional orbits is equivalent, as a G space, to the space of
straight lines; they differ in their symplectic structures. In other words, there
is a two parameter family of invariant symplectic structures on the space of
straight lines. Let us describe the parametrization of these structures: Fix a
straight line, say the z-axis. The subgroup, H, which fixes this axis consists of
rotations about, followed by tianslations along, this axis. We must find all p
which are left invariant by this subgroup H. Let A denote the Lie algebra of
H. A basis of H is given by R, and T, where R, denotes infinitesimal rotation
about the z-axis and 7, denotes infinitesimal translation along the z-axis. It is
easy to see that if y is left invariant by H, it must vanish when evaluated on
infinitesimal rotations or translations about the x or y axes. Thus p is
determined by its values

p(R,) = s
and

p'(Tz) =7r.

We may fix R, so that exp 2#R, = 1 and thus s is a real number; since we
may rotate the positive z-axis into the negative, we see that s can be taken to
be a nonnegative real number. A choice of 7, is equivalent to a choice of unit
of length, so we see that r has the units of inverse length. In fact, the value
r = 0 is not allowed, for it turns out that this corresponds to a two-dimen-
sional orbit. So we may write » = A~ ! where A has the units of length. What is
the physical significance of this length? The linear function p can be re-
stricted to A, i.e. thought of as a linear function on A. It vanishes on the
commutator subalgebra [A, h]-here because & is abelian, but the correspond-
ing fact is true in general. We can think of u as an “infinitesimal character”
on h, and try to define the corresponding character x, on H by

x,(exp X ) = &2"#X)

for X € h. There will be trouble at those X € h for which exp X = id, and
the definition only applies to the connected component of H, so further
specification would be required if H were not connected (which would occur
in our case if the Euclidean group included reflections). For the translation
subgroup, T, of H these problems do not arise, and we can write

X”(d) = e2m’d/h

where d stands for translation through distance 4 along the z-axis. Let us
compare this with the wave theory of light as developed by Young and
Fresnel. Newton, in his famous experiments with the prism, had come to the
conclusion that “colours are original and connate properties of light”, and
that “to the same degree of refrangibility ever belongs the same colour and to
the same colour ever belongs the same degree of refrangibility”. That white
light is really a superposition of the more elementary light rays of specific
color. Young, in the Philosophical Transactions for 1802, writes of his
discovery of a “simple and general law” that “wherever two portions of the
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same light arrive at the eye by different routes, either exactly or very nearly in
the same direction, the light becomes most intense where the difference of the
routes is a simple multiple of a certain length, and least intense in the
intermediate state of the interfering portions; and this length is different for
light of different colours”. Thus each “elementary” kind of light is associated
with a definite length. Fresnel explained the phenomenon of interference of
monochromatic light as follows (we paraphrase his explanation): Associated
with each point on a light ray of geometrical optics is a complex number, ¢
(determined by an overall phase factor). As the light propagates along the
ray, not only does the amplitude, |c|, decrease due to the attenuation of the
light, but the phase changes; the change in phase as we move along a ray a
distance of optical length d is given by multiplication by the factor ¢?™4/A
where A is defined to be the wave length of the light. If light arrives at some
point from various rays, we add the ¢’s from each ray to obtain a total value,
C. The intensity of the light at the point is proportional to |C|%. This
formulation of Fresnel, when combined with geometrical optics, is sufficient
to explain the observed phenomena of interference and diffraction. But we
see that our parameter A is nothing other than the wave length of the light! If
we ignore the attenuation factor, we can formulate Fresnel’s analysis of the
phase change in more modern language by saying that light is associated with
a complex line bundle over the space of rays of geometrical optics. For a
homogeneous medium, where the light rays are straight lines, any homoge-
neous such bundle will be specified by a character, x, on the subgroup, H,
fixing a single line. Restricted to the translation subgroup, T, of H, we must
have x(d) = €™/ for some A (unless x(d) = 1) and this A is the wave length
of the light. What about the parameter s? In the Euclidean group, exp 27R,
= id. Since 1 = x(id) for any character, and x,(27R,) = e®>™, we see that s
must be an integer. (Actually, as in more modern theories, we might want to
consider the universal covering group of the Euclidean group, which is a
double cover, and in which exp(2#R,) # id but exp(47R,) = id. Then the
condition becomes that 2s is an integer.) Does the integer s make its
appearance in the theory of light? Again the answer comes from the work of
Young and Fresnel, this time on polarized light. To explain the phenomenon
of polarization, they were led to conclude that light consists of “transverse
vibrations”. In terms of the preceding description we must take ¢ not to be a
complex number but a complex two-dimensional vector normal to the light
ray. In more modern language, we must look at the complexified normal
bundle, which induces a two plane bundle on the space of lines. The
two-dimensional complex representation of the group of rotations about the
z-axis splits into a direct sum of two one-dimensional representations; and
the associated line bundles correspond to s = 1 and s = -1, corresponding to
right-handed and left-handed circularly polarized light. It is interesting to
read the papers of Arago and Fresnel and see how much Euclidean geometry
enters into their discussion. The idea that, in general, one should single out
certain orbits corresponding to p’s satisfying integrality conditions, and that
these are associated with complex line bundles, is known as prequantization.
It was introduced and developed by Kostant in his fundamental paper [6] and
is a key step in “geometrical quantization™.



384 BOOK REVIEWS

So far I have described some actual history of physics, albeit from a special
point of view. Now I want to engage in some historical science fiction.
Suppose that mechanics had developed before the invention of clocks. So we
could observe the trajectories of particles, their collisions and deflections, but
not their velocities. For instance we might be able to observe tracks in a
bubble chamber or on a photographic plate. (In the case of light, all of the
work described above was done before there was any accurate measurement
of the velocity of light.) The configuration space of a single particle is just the
three-dimensional Euclidean space, E3, the corresponding phase space, T*E*
is six dimensional, with coordinates (g, p) where ¢ and p are three vectors.
The Euclidean group acts on T*E3. A rotation 4 sends (g, p) into (4q, Ap)
while translation through vector v sends (g, p) into (g + v, p). These are
clearly symplectic transformations as required. The Euclidean group does not
act transitively on T*E, since || p||, called the total momentum is invariant.
The collection of all (g, p) with a constant value of || p|| is a five-dimensional
manifold on which the Euclidean group acts transitively. The points (¢ +
tp, p) all lie on a straight line, and it follows from some elementary symplectic
geometry that the symplectic structure of T*E, together with the choice of
llpll, determines a symplectic structure on the space of lines. Since this
symplectic structure is invariant under the Euclidean group, it must coincide
with one of those described above. In fact, an easy computation shows that it
is the one with s = 0 and r = || p||. Thus each “free particle” is parametrized
by its total momentum. (In the absence of the notion of velocity, we cannot
distinguish between a “light particle moving fast” or a “heavy particle moving
slowly”. Of course, from the scattering experiments themselves, we would be
led to discover new conserved quantities such as energy, and thus be led to
enlarge the group. But I do not want to go into this point.) Without some way
of relating momentum to length, we would introduce “independent units” of
momentum, perhaps by combining particles in various ways and performing
collision experiments. But we know that the “natural units” should be inverse
length. A single experiment, the photoelectric effect, involving an interaction
between light and one of our “particles” would then give us the conversion
factor, and allow us to write ||p|| = h/A. Thus, from this group theoretical
point of view, Planck’s constant, A, is a conversion factor from the “indepen-
dent” units of momentum to the “natural” units of inverse length. Of course,
the story did not develop that way. The “conversion factor” was first found
between “energy” and “inverse time”; but to explain this would involve us in
larger groups such as the Galilean or Poincaré groups and take us too far
afield.

Group theory, in conjunction with symplectic geometry, is a powerful tool
in the solution of the equations of motion of certain mechanical systems.
Suppose that the group G acts on some symplectic manifold, N, as symplectic
diffeomorphisms. Under certain additional hypotheses, one can conclude the
existence of a map ®: N -» g* such that ®(4n) = 4 - ®(n) forall 4 € G and
n € N. This map is the group theoretical generalization of the notion of
(total) linear or angular momentum. It was discovered in this generality by
Souriau and called the moment map. In a fundamental paper [8], Marsden
and Weinsten show that (under suitable technical hypotheses) ®~!(u) is
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naturally associated with an auxiliary (“reduced”) symplectic manifold, S, =

o (w/ G, where G, is the isotropy group of p. If the Hamiltonian, H
invariant under G, then the Hamiltonian flow leaves ®~!( ) invariant; the
Hamiltonian determines a function, H, on S,, and this reduced Hamiltonian
system, if solved, can be used to reconstruct the flow on @~ (). All of this is
very clearly explained in Abraham and Marsden, §4.3. In [S] this procedure is
reversed, and a complicated looking flow on a certain S, is shown to be
equivalent to a simple looking one on N. Also in [5] the structure of the
inverse image of an entire orbit is investigated. If H, on the other hand, is of
the form H = P o ® where P is some function on g*, then the study of the
flow on N can be reduced to the study of the flow given by P on various
orbits, cf. [4]. In fact, cf. [7], various classical and modern mechanical systems
can be identified and solved as flows on orbits with Hamiltonians having a
group theoretical significance. Indeed, thanks to the efforts principally of
Kostant and Moser, all the classically integrable systems save one have a nice
group theoretical interpretation. The one classical system, which at the time
of this writing is still not “understood” from the group theoretical viewpoint,
is Kowalewskaya’s top—the motion of a symmetric rigid body about a fixed
point, when two of the principal moments of inertia at the fixed point are
equal and are double the thrd, with the center of gravity situated in the plane
of the equal moments of inertia.

2. Let me now turn to an analysis of the book. The development of the
ideas described above requires a considerable amount of differential geome-
try. The first part of the book, 156 pages, is devoted to a self-contained
treatment of all the necessary geometrical tools. The authors have done a first
rate job, and I know of no better source from which to learn this material. I
have tried one or two expositions of this sort of stuff myself, so I am very
familiar with the pedagogical difficulties that the authors have overcome. Part
II is entitled “Analytic Dynamics”, consisting of three chapters. The first of
these gives a clear, more or less standard, presentation of Lagrangian dy-
namics on the tangent bundle, Hamiltonian mechanics on the cotangent
bundle, the variational calculus and the relations among them. The next
chapter deals with mechanical systems with symmetry. It deals with Lie group
actions on manifolds, the moment map, the Kirilov-Kostant-Souriau theorem,
the reduction of systems with symmetry (as mentioned above), Smale’s
program for the study of Hamiltonian systems with symmetry, all of these
very well presented, and the rigid body. The treatment of the rigid body
follows Arnold’s paper [1] which was among the first group theoretical
treatments of mechanics in the modern literature. It is indeed pleasant to
learn that the basic theorem of Poinsot on the motion of the rigid body
without forces—that “the polhode rolls along the herpolhode without slipping
in the invariable plane” is valid for the left invariant geodesic flow on any Lie
group. But does one really need six different formulations of the Euler
conservation laws in a theorem whose statement extends over two pages?
More seriously, there is no discussion whatsoever of the rigid body in the
presence of forces. Lagrange’s top—a rigid body with two moments of inertia
equal and with the center of mass along the third axis in a uniform gravita-
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tional field—-can be given a completely group theoretical treatment. One
should compare Abraham and Marsden’s discussion with the treatment in
Arnold’s book, where, in a few short pages, one gets a clear picture of the
motion. The third chapter in this part deals with the Hamilton-Jacobi theory,
infinite dimensional Hamiltonian systems, an introduction to nonlinear oscil-
lations and quantization. The proof of von Hove’s theorem on the impossibil-
ity of complete quantization is very clearly presented and very illuminating.
The remaining topics are also presented with great care and at a high level of
exposition. Throughout these three chapters, an enormous amount of addi-
tional material is presented in the form of exercises, making the book
indispensable as a reference. The third part, “An Outline of Qualitative
Dynamics™ is just that. Many results are stated without proof, referring the
reader to other sources. A comprehensive survey is given of topological
dynamics, differentiable dynamics and a qualitative discussion of Hamilto-
nian dynamics. A very instructive collection of figures of stable bifurcations
of vector fields, with exotic names attached and of Hamiltonian vector fields
(in dim. 4) are presented. The literary style here is also refreshingly different.
One gets the impression of hearing a sports fan relive some favorite moment.
Thus, on page 535, we read about a proposed definition that “Within days of
the proposal of these weaker notions of stability, the first of the counterexam-
ples was constructed, killing hopes that they . . . ”. Sometimes the authors get
carried away in group rhetoric. Thus, on page 542, we read “What of the
future? The gap A C C G, still prevents pilgrims from climbing to heaven by
performing good works.”

The fourth part is called “Celestial Mechanics™. A very careful discussion is
given of various models of the Kepler problem, and of the restricted three
body problem, perhaps overly detailed. (With understandable prejudice, I
prefer the treatment in my book [11], which although a bit sloppy from a
mathematical point of view, gets to the desired goal much faster.) No proof of
the basic implicit function theorem is given; the reader is referred to other
sources, presumably either my book [11] or Siegel-Moser [9]. More seriously,
no mention is given of some of the more important recent developments in
this direction, such as the remarkable solution by M. Herman of the Poincaré
circle problem, and the applications to the study of groups of diffeomophisms
by Thurston, Mather, Banyaga, and others. The book closes with a clean
treatment of the work of Smale and Iacob on the topology of the planar n
body problem. All in all, a remarkable achievement of scholarship and
exposition.

Perhaps some comments are in order comparing Abraham and Marsden
with some of the other recent books. First of all, Abraham and Marsden is a
book on mathematics, not physics. It has as its goal the elucidation of the
mathematical structures underlying mechanics and areas of pure mathematics
that have been stimulated by problems in mechanics. It does not try to use
the mathematical structures as organizing principles for physical insight.
Thirring [13] is a book on physics, indeed part of a lecture course series on
theoretical physics. Thirring does not have any discussion of the interaction
of group theory with mechanics, or of qualitative dynamics in the broad
sense, two major themes in Abrahdm and Marsden. Thirring does always
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have his eye on broader physical issues. Thirring is succinct, Abraham and
Marsden is encyclopedic. Souriau [10] is a deep and original book. At every
turn one finds novel profound insights into the relation between geometry
and physics, not only in mechanics but also in statistical mechanics and
quantum mechanics. It has already had a major impact on portions of the
mathematical community; one hopes that it will have a similar influence on
physicists. Unfortunately, its eccentric notation probably makes it impenetra-
ble to most. It is not easy reading. Arnold [2] is a pleasure to read from
beginning to end. Written by the sure hand of a master, every detail shines
like a polished jewel, and the overall structure has the strength of a coherent
point of view. It is primarily a book on mathematics but the interactions with
physics are not neglected. I have not taught from it, but imagine that it makes
the perfect text. Siegel-Moser [9] is also a classic, written by masters of the
subject. It is more restricted in scope, being concerned with the deep mathe-
matical theorems of celestial mechanics. All the above books should be on the
shelf of every serious student of mechanics. One would like to be able to
report that such a collection would be complete. Unfortunately, this is not so.
There exist topics in the classical repertoire, such as Kowalewskaya’s top
which are not covered by any of these books. So hold on to your copy of
Whittaker [14].
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