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Brownian motion and classical potential theory, by Sidney C. Port and Charles 
J. Stone, Academic Press, New York, 1978, xii + 236 pp., $22.50. 

This book does an excellent job of developing classical potential theory 
based on Brownian motion. 

"Classical potential theory" means the theory of the Laplacian on a 
domain in En. For the purposes of this review one should think of "Brownian 
motion" as consisting of the entire following collection of objects: the Gauss 
kernel/?(/, x,y) = (2<irt)~n/2 exp(-|x - y\2/2t\ t > 0, x andj> in En, with the 
corresponding semigroup PJ(x) = ƒEn p(t, x, y)f(y) ay of operators on func­
tions; a family {Px; x in En) of probability measures on the space ti of 
continuous paths / -» X(t) from [0, oo) to En. The measures Px have special 
properties such as (1) each Px attributes mass 1 to the set of paths that start 
at the point JC, (2) integrals over En are related to integrals over function 
space by formulas such as: PJ(x) = fçif(X(t))dPx and more complicated 
iterates of these. A probabilist would say simply that relative to each Px the 
coordinate functions X(t) on the sample space 12 form a time homogeneous 
Markov process with transition density/?(/, x,y) and initial position x. 

Henceforth we will use the abbreviation EXY for the integral Jn Y dPx, 
Many useful aspects of the theory involve appropriately selecting Y and then 
developing properties of the function x -» EXY. For definiteness take n = 3 
and define the potential of a function ƒ or a measure JU, by Uf(x) = 
io° PtAx) dt and iiU(y) = fE3 JU (dx)\x - y\~\ so that these are simply the 
familiar Newtonian potentials. On the other hand an extension of (2) above 
shows that Uf(x) = EXY with Y = f£ f(X(t)) dt and, more informally, that 
fiU(y) dy represents the expected length of time that the wandering path 
t -» X{i) spends in the volume element dy about y if the initial position X(0) 
is random with distribution /*. In either case the analytic object is expressed 
as an integral over function space. 

We will give three examples to show how such representations illuminate 
aspects of classical potential theory. Of course all three are discussed thor­
oughly in the book under review. They all involve the following objects: a 
subset A of E3, the (random) time T at which the path t -> X(t) first meets 
the set A, and the place X(T) at which the first meeting occurs. 

(1) DIRICHLET PROBLEM. If D is a region and ƒ is a function on its 
boundary, then take A to be the boundary of D and set h(x) = Exf(X(T)). It 
is fairly obvious that on D the function h has the mean value property (any 
small sphere about x in D must be hit by the path before it proceeds to the 
boundary A, while symmetry considerations dictate that the hitting distribu­
tion on the sphere will be uniform). And if x is near the boundary and the 
boundary is smooth then the hitting place X(T) should, with high probability, 
be close to x. Thus at least if ƒ is continuous, the right boundary behavior 
should hold and so h solves the Dirichlet problem with boundary data/. This 
seems like an appealing way to start a rigorous discussion of the complete 
problem. 



478 BOOK REVIEWS 

(2) MAXIMUM PRINCIPLE. The definition Uf = /J0 PJ dt and the semigroup 
properties of the operators Pt show that PtUf — ST?J^ aiK* t n i s a s a 

function space integral is E'fj? f(X(s)) ds. Some attention to measure theory 
shows that this formula is still valid if the fixed time / is replaced by the 
random time T already defined. The resulting formula is Exfjf(X(s)) ds = 
ƒ ix(cfy)Uf(y) where JU, is the distribution of the hitting place X(T). In 
particular if ƒ vanishes off the set A then the probability integral is equal to 
Ex{™ f(X(s)) ds or Uf so in this case we have Uf = pUf with JU, a measure 
carried by A. It is an immediate consequence that if ƒ and g are positive 
functions with the property that Ug exceeds Uf on the support of ƒ then Ug 
exceeds Uf everywhere. This is the maximum principle of classical potential 
theory. The probability argument is very direct. 

(3) BALAYAGE. If JU is a measure and A is a set, one looks for a measure v 
which is concentrated on A and has the property that vU agrees with \iU on 
A. (Once v is shown to exist, the operation of passing from p to v is called 
balayage.) A discussion exactly like that of the maximum principle shows that 
the desired v is simply the distribution of X(T) if the initial position, X(0)9 of 
the path is given the distribution ji. SO again a "solution" to the problem is 
obtained quickly. Of course, much of this apparent brevity is a little mislead­
ing as we will indicate later. 

Leaving the illustrations and returning to a more general description, the 
meaning of basing potential theory on probability is this: one uses the 
stochastic process (or the measures on function space) to define and analyze 
potential theoretic objects like superharmonic functions, balayage, regular 
points for the Dirichlet problem. Also one uses probability techniques like 
time reversal of the stochastic process to prove symmetry of the Green 
function or to establish properties of capacity. The book under review treats 
the most important case of the general theory. The general theory was given 
in 1957 by G. A. Hunt. He defined a potential operator as a positive linear 
transformation, U, of continuous functions on some space, satisfying the 
maximum principle of our second example. He showed that associated with 
each such operator is a Markov semigroup {Pt} so that U = J™ Pt dt as in 
the case at hand. He then used the accompanying Markov process to derive 
and study a theory of potentials which is related to U in exactly the same way 
as ordinary potential theory in E3 is related to the Newtonian potential 
operator. The "Brownian motion" case is what one gets when the Markov 
semigroup arises from the Gauss kernel or from some rather specific altera­
tion of it necessary to handle potential theory on a proper subdomain of the 
space. In this case the probabilistic approach had been used with profit by 
Doob, Kac, Kakutani and others prior to the appearance of Hunt's general 
theory. 

To appreciate the probability approach it is not necessary to learn general 
Markov process theory. Practically everything of importance already is signi­
ficant when one derives classical potential theory from Brownian motion. 
Here the potential theory is familiar (harmonic functions, Newtonian capac­
ity, etc.) while the probability is known well enough that extensive measure 
theoretic preliminaries are not required. The authors have taken full advan-
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tage of this somewhat limited context to make a readable and enjoyable 
presentation. 

The book covers most of what is important in classical potential theory. 
For a definition of "importance" the reviewer used the book Introduction to 
potential theory by L. L. Helms. Almost every fact in Helms' book can be 
found in Port and Stone, and a comparison of the two books is interesting. 
For example, in the probability approach one writes down more or less 
immediately a solution of the Dirichlet problem in an arbitrary domain, while 
the classical approach starts more slowly with a ball and Poisson's integral 
formula. However by the time the treatment via probability is complete, 
including irregular domains, discontinuous boundary functions and excep­
tional boundary sets, it is just as long as the complete classical treatment. In 
fact the two books have the same length, so that some "conservation" 
principle is at work. 

The listed prerequisites-knowledge of real variable theory plus a graduate 
level probability course-are more than adequate. It would have been feasible 
and appropriate to include exercises, especially since many people come to 
this subject considerably more familiar with one side than the other. 

A moderate-sized book cannot contain everything. Some omissions on the 
potential theory side are the fine topology and the Martin boundary. Both 
topics would have fit in nicely: the probability approach leads to a very nice 
definition of "finely open" set, while the symmetry of the Green function 
eases the difficulty in proving the fundamental fact that the process converges 
to the Martin boundary. On the probability side the most important omis­
sions are multiplicative and additive functional, the latter being the sample 
function analogue of measures with finite potential. 

In summary, this book is an attractive introduction to probabilistic poten­
tial theory. Readers who wish to learn important probablistic applications of 
the theory should next tackle the challenging Diffusion processes and their 
sample paths by Itô and McKean. 

R. M. BLUMENTHAL 
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Convexity and optimization in Banach spaces, by V. Barbu and Th. Precupanu, 
Sythoff & Noordhoff International Publishers, Alphen aan den Rijn, The 
Netherlands, 1978, xi + 316 pp. 

The objective in studying abstract optimization problems is the develop­
ment of a comprehensive theory that will contain specific optimization 
problems as special cases. Today, the mainstream of research in this area 
results from the confluence of developments in optimal control theory and in 
mathematical programming. Optimal control theory, in turn, encompasses 
much of the classical calculus of variations. 

The calculus of variations originated in 1697 with the solutions of the 
brachistochrone problem by John and James Bernoulli. From then onward, 
the calculus of variations was a central and vital subject in mathematics. By 


