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equicoloration theorem has been shown by Hajnal and Szemeredi. 
There are many other subjects covered in this volume and we shall not 

attempt to enumerate them here. The topics covered are generally discussed 
in depth. The book, though self-contained, would be difficult reading without 
some prior basic knowledge of Graph Theory. The pace is brisk and the 
reader is quickly brought to the frontiers of the subject. 

Bollobâs is a fastidious writer. The theorems are precisely stated and the 
proofs are carefully written. The publisher, Academic Press, has done a fine 
job. Most important, Bollobâs is a mathematician who knows his material. In 
section after section he takes a set of theorems and, by appropriate con­
catenation plus some well chosen words of explanation, he creates a Theory. 
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1. Is it best to think of a 'diffusion* as meaning (i) a continuous strong 
Markov process, (ii) a strong solution of an Ito stochastic differential equation, 
or (iii) a solution of a martingale problem! Both the Markov-process approach 
and the Itô approach (which holds so special a place in the hearts of 
probabilists after the appearance of McKean's wonderful book [7]) have been 
immensely successful in diffusion theory. The Stroock-Varadhan book, devel­
oped from the historic 1969 papers by its authors, presents the martingale-
problem approach as a more powerful-and, in certain regards, more intrin­
sic-means of studying the foundations of the subject. 

The martingale-problem method has been applied with great success to 
other problems in Markov-process theory, both 'pure' (Stroock [10] , . . . ) and 
applied (Holley and Stroock [3], [ 4 ] , . . . ). It has conditioned our whole way 
of thinking about still-more-general processes (Jacod [ 5 ] , . . . ). Moreover, the 
method's ideas and results now feature largely in work on filtering and 
control (Davis [1], . . . ). 

I 'batter' you with the preceding paragraph because the authors make the 
uncompromising decision not 'to proselytize by intimidating the reader with 
myriad examples demonstrating the full scope of the techniques', but rather 
to persuade the reader 'with a careful treatment of just one problem to which 
they apply'. Halmos's doctrine 'More is less, and less is more' is thereby 
thoroughly tested; but if one had to choose a single totally-integrated piece of 
work which in depth and importance shows that probability theory has 'come 
of age', it would surely be the theorem towards which so much of this book is 
directed-or perhaps Stroock's extension of it [10]. Most of the main tools of 
stochastic-process theory are used, after first having been honed to a sharper 
edge than usual. But it is the formidable combination of probability theory 
with analysis (in the form of deep estimates from the theory of singular 
integrals) which is the core of the work. 
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The book's importance has persuaded me to write a review accessible to the 
general reader-I even define continuous martingalel I therefore concentrate 
on background material, with just a few clues (some for the sharp-eyed!) on 
how the book's results are proved. 

2. The following purely-analytic (and very special) corollary of the main 
Stroock-Varadhan theorem can help set the scene; and the fact that, in spite 
of so much research, no analytic proof of its uniqueness assertion has been 
discovered, can serve as a first indication of the depth of the theorem. 

Let L be a second-order elliptic operator on C£(Rd) of the form 

^ 4 ^ 2 ayWflj + S bê(x)di9 (2.1) 
ij<d i«1 

where 3, denotes d/dxi9 {a^x)} is a strictly positive-definite real symmetric 
matrix for each x, and where each a^-) and each £,(•) is a bounded continuous 
real-valued function on R .̂ No Lipschitz conditions are assumed. Then there is 
one and only one Feller-Dynkin semigroup {Pt: t > 0}1 with infinitesimal 
generator extending L. (Chapter 10 of the book examines closely the extent to 
which the 'boundedness' condition on a and b may be relaxed. It cannot be 
relaxed completely because one must preclude 'explosion'.) 

3. With a general Feller-Dynkin semigroup {Pt} is associated an R^ valued 
Markov process X = {Xt\ t > 0} with right-continuous paths, such that the 
law Px of X started from x is given by the usual recipe: for 0 < tx < t2 

< • • • < tn, we have2 

Px[Xh G dxx; Xh e dx2; . . . \Xtn e dxn] (3.1) 

= Ph(x, dxx)Ph_tx(xv dx2) . . . Ptn_tni(xn_v dxn). 

But if {Pt} has generator extending our operator L, then, because L is local, 
we can take X to be (p2ith-)continuous? 

lA 'Feller-Dynkin' semigroup {P,: / > 0} is a family of bounded linear maps Pt: C0(R
rf)-» 

C0(R
d), where C0QBLd) is the Banach space of continuous functions on Rd which 'vanish at oo*, 

such that 
f>0=>PJ>0; Ptl = \; PsPt = Ps+t; PJ->f (40). 

('Pointwise' and 'strong-topology' convergence in the last statement are equivalent under the 
remaining hypotheses.) The statement that {Pt} has infinitesimal generator extending L amounts 
to the statement that 

PJ-f=('psLfds, v/eqp(tf). (2.2) 
•'O 

Note that the differentiated form (PJ)' = PtLf of (2.2) corresponds to the Fokker-Planck 
equation. 

2Here, the transition probability measure Pt(x, •) is of course that associated with the map 
ƒ h* PJ(x) on C0(R

rf) by the Riesz representation theorem. 
3Conversely, if each Px measure associated with a Feller-Dynkin semigroup {Pt} assigns mass 

1 to the set of continuous paths, then the generator G of {Pt} must be local and must obey the 
maximum principle: if ƒ G D(G), then Gf < 0 at a maximum off Hence if Cx(Rd) c D(G), then 
G acts on C^(Rd) as a (possibly singular) second-order elliptic operator with continuous 
coefficients. The fact that it can happen that D(G) n CjfQV*) = {0} is one reason why the 
definition of a diffusion as a continuous strong Markov process, though intrinsic, is too wide. 
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A Markov process is a much richer structure than its transition semigroup, 
and it may be subjected to all sorts of transformations which have no analytic 
counterpart. This explains why probability theory can obtain analytic results 
which escape analytic proof (and the literature contains many very striking 
instances of this). But in the richer setting, the purely-analytic questions are 
of secondary interest. 

4. Continuous JP-martingales. We discuss martingale theory only in the 
special context appropriate to diffusion theory. 

Let 12 = C([0, oo ), R^) be the space of all continuous functions <o from 
[0, oo) to R .̂ For t G [0, oo) and w G 12, write X for the coordinate process 
with Xt{u>) = co(/). Put 5£ = o{Xs: s > 0), the smallest a-algebra of subsets 
of 12 such that every map Xs from 12 to R^ is 5£ measurable; and, for / > 0, 
put %° = a{Xs: s < / } . 

Let M be a continuous adapted real-valued process. Thus, the map M: 
[0, oo) X 12 -» R is such that t H> Mt{u)) is continuous for every <o, and M is 
{%° } adapted in that for each t, Mt(-) is %° measurable.4 

Let P be a probability measure on (12, $£). Then M is called a (continu­
ous) P-martingale if Mt G t\Ü, %°, P), \ft, and, whenever s < t and A G 

f Mt(ü))P(do>) = f Ms(œ)P(du).5 

5. Martingale problems for L. Let L be as at (2.1). Let P be a probability 
measure on (12, §£). Let x G R*. 

DEFINITION. We say that P solves the martingale problem for L starting from 
x if P[X0 = x] = 1 and, V/ G C£(Rd), the process Cy, where 

C{ = f(Xt)- f' Lf(Xs)ds 

is a P-martingale. 
Assume for the moment that a Feller-Dynkin semigroup {Pt} exists with 

infinitesimal generator extending L. As explained in §3, it is possible to define 
a probability measure Px on (12, §£) via (3.1). It is almost trivial to use (2.2) 
to show that Px solves the martingale problem for L starting from JC. 

In the special context corresponding to §2, the main Stroock-Varadhan 
theorem takes the following form. 

THEOREM. Let L be a second-order elliptic operator on C£(Rd) satisfying the 
hypotheses described at (2.1). Then, for each x in Rd, there is one and only one 
solution of the martingale problem for L starting from x. Moreover, this solution 
is of the Markovian form Px derived as at (3.1) from the unique Feller-Dynkin 
semigroup {Pt} with generator extending L. 

In fact, for the existence-and-uniqueness part of the result, Stroock and 
Varadhan allow the matrices a(-) and b(-) to be time-dependent, and impose 

4The intuitive thrust of this requirement is that M,(w) is determined when the values Xs(cS) for 
s G [0, /] are known. 

5This is the full statement of the requirement that the conditional P-expectation of Mv given 
the information §s° about what has happened up to time s, is Ms: under P, the 'game' M is fair. 
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only a measurability requirement on b. This generalisation is not merely an 
academic matter: it is just what engineers need (see Davis [1] , . . . ). 

Before thinking briefly about how the theorem is proved, let us spend some 
time in getting an intuitive feeling for continuous martingales and semi-
martingales.6 

6. Continuous P-semimartingales. Again let P be a probability measure on 
(fl, #£) . The integrability condition (Af, E Ê1) in the definition of 
'martingale' is a nuisance. Call a continuous adapted process M a (continu­
ous) local P-martingale if, for every n, Mn is a P-martingale, where 

Mt
n - MtArin} - M0, and r(n) « M{s: \MS - M0\ > n}. 

(This is one of many instances where I use simple definitions and/or results 
which work only for continuous processes. Meyer [8] has the 'correct'-that is, 
generalisable-versions). 

We now arrive at one of the central concepts of Strasbourg theory. Call a 
continuous adapted process Z a (continuous) P-semimartingale if Z may be 
written as follows: 

Z, - Z0 + Mt + Vt9 (6.1) 

where M is a continuous local P-martingale with M0 = 0, and F is a 
(continuous adapted) process with paths of finite variation and with V0 = 0. 
It is surprising that the decomposition (6.1) is P-unique: if Z = Z0 + M* + 
Vf, then P[Mt = M*, \ft] = l.7 

7. Generalised Itô formula: continuous case. Let Z be a continuous P-semi­
martingale with decomposition as at (6.1). You can see that V represents the 
'drift' of Z away from the fair (local martingale) situation. 

By the celebrated Meyer decomposition theorem, there is a P-unique con­
tinuous adapted process <M, M ) with nondecreasing paths such that 
<M, M>0 = 0 and M2 — <M, M> is a local P-martingale. Moreover, by a 
theorem of Kunita, Watanabe, and Doléans, there exists a sequence (nk) 
along which, with P-probability 1, 

<M, M >, - lim 2 [M,A/2-« - M,A(/_1)2-*]2 \ft, 

6The theory of martingales, and of the still-more-important semimartingales, has been devel­
oped to a very advanced level by the French school of probabilists led by Meyer. (But we must 
not forget massive Japanese contributions.) I myself have on occasion been mischievous in 
comments on 'Strasbourg theory', and I think that Stroock and Varadhan are perhaps just a little 
mischievous in this regard. Strasbourg publications are generally inclined to be somewhat 
abstract in spirit. However, they do contain a profound analysis of intuitive thinking; and, with 
sufficient poetic licence, they may be regarded as in the direct tradition of Levy's work. Meyer [8] 
is the definitive work on the Strasbourg theory of stochastic integrals. Dellacherie, Doléans, 
Letta, and Meyer [2] is a most helpful 'Strasbourg' look at part of the Stroock-Varadhan theory. 
These two papers are my guides for the next few sections. Incidentally, I am using the 
long-thought-about Strasbourg notation throughout the review. 

7An immediate consequence of the P-uniqueness just asserted is that a continuous local 
P-martingale M cannot have paths of finite variation unless it is constant. (You supply the 
'almost surely' qualification.) This explains why we need a stochastic integral. It is important that 
the mildest regularity requirements on a 'stochastic integral' force us to consider only stochastic 
integrals relative to (possibly discontinuous) semimartingales. 
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the limit existing uniformly on compact /-intervals. Infinitesimally, 

(dZtf = (dMf « d(M, M\ 

(in some sense!), so Taylor's theorem leads us to anticipate the generalised Itô 
formula for the continuous case: 

df(Z) « ƒ(Z) dZ + \f\Z)d{My M>. (7.1) 

The moral is that a C2 function ƒ of a continuous P-semimartingale Z is again 
a continuous P-semimartingale with decomposition 

f(Zl)=f(Z0)+ f'f(Z)dM 

+ { jf'/XZ.) dVs + jjTV"(Zf) </<M, A/>,}, (7.2) 

the first of the integrals, a stochastic integral, yielding a local P-martingale.8 

The final two integrals in (7.2) are Stieltjes integrals over s for each <o. 

8. Diffusions as semimartingales. If Z is our continuous P-semimartingale 
as at (6.1), and ƒ is a C£ function on R, then, by (7.2), 

/(Z,) - { JT'AZ.) rfF, + I j f>(Z f ) </<il#, A/),} 

is a local P-martingale. (More general martingale problems loom into view; 
but back to diffusions . . . .) 

Take d = 1, and L = \a(x)d2/dx2 + b(x)d/dx, where a(-) and £(•) are 
continuous (but 'measurable' will do!) and a(-) > 0. We see that a measure P 
on (£2, $£) stf/ües f/ie martingale problem for L starting from x if and only if 
P[X0 = x] = 1 and the coordinate process X is a P-semimartingale with 
decomposition X = X0 + M + K satisfying 

Vt - P *(*,) A, <M, M>, - f ' <,(*,) A. 
•'o 'o 

'Vector' generalisations to d > 1 are obvious. See footnote 8! 

9, The martingale problem for Wiener measure. Continue with d = 1. Take 
b = 0, a = 1, x = 0. If P satisfies the corresponding martingale problem, 
then P[Ar

0 = 0] = 1, and X is a local P-martingale with <AT, AT>, = t. A 
trivial modification of (7.1) shows that dY? = WYf dX, where Y,* = exp(i0Xt 

+ ^02/). Hence y is a local P-martingale, and indeed a P-martingale because 
Yt° is bounded by exp(| 02t). It is immediate to anyone who recognizes the 
characteristic function of the normal distribution that X is an ({5,°}, P) 
Brownian motion: Xt is %° measurable (\ft), and, under P, Xt+h — Xt is 
independent of %° and has the normal distribution of mean 0 and variance h. 

8With U standing for f'(Z), the stochastic integral ƒ U dM is a limit of Riemann sums 
2t/,(AfJ+/i — A*,)» with each M-increment pointing into the future of the U-value. This is why 
ƒ U dM is a local martingale. The super-elegant modern (Kunita, Motoo, Watana-
b e , . . . , Meyer) theory defines ƒ U dM as that P-unique continuous local P-martingale starting 
at 0 such that for every continuous local P-martingale N with N0 = 0, <ƒ U dM, N}t = 
f'o U3d<M, N> up to P-uniqueness, where <A#, iV> - £ « M + AT, AT + iV> - <M, #> -
<Af, iV». See Meyer [8]. 
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Thus P is forced to be Wiener measure. This result, discovered by Levy (who 
else?!), is what gave hope for the martingale problem method. Splendid as the 
Kunita-Watanabe proof just given is, it is tied to this 'freak' case, and so is 
superseded by the proof in §12 below. 

10. Martingale problems and stochastic differential equations. Again take 
d = 1, and assume that P solves the martingale problem starting from x for 
L =\a(x)d2/dx2 + b(x)d/dx, where a and b are continuous (or just 
measurable) and a(-) > 0, 

Put a(x) = a(x)x/1, and write 

dB = o(xyl dM = o(X)~l[dX - b(X) dt], B0 = 0. (10.1) 

Then B is a local P-martingale and (dB)2 = a(X)~ld(M,M} = dt. By 
Levy's theorem, B is an ({^t°}, P) Brownian motion. Moreover, the formally-
obvious consequence: 

dX = o(X) dB + b(X) dt (10.2) 

of (10.1) is easily proved. (It is obvious from the modern theory in footnote 8.) 
Note that we constructed B from X, 

This is the reverse of the situation in Ito theory, where the aim is to study 
(10.2) as an equation for an 'unknown9 X for a given Brownian motion B, 
Under Lipschitz conditions on a and b, Itô solved (10.2) via successive 
approximation, Picard-style, obtaining A" as a INadapted process (Xt is o{Bs: 
s < t] measurable). It is not known whether a i?-adapted solution X of (10.2) 
exists when a mere continuity hypothesis is imposed on a and b: X may 
require more randomness than B can provide. To understand what might be 
going on here, study the still-rather-mystifying Tsirel'son counterexample in 
Liptser and Shiryayev [6]. 

Many aspects of the relationship between Itô theory and S-V theory are 
subtle and difficult. Chapter 8 of the S-V book is a careful study, following on 
from important work of Watanabe and Yamada. One of the main results is 
that 'Itô uniqueness' (watch the formulation!) implies uniqueness in the 
martingale-problem sense. 

11. Why has the martingale-problem method succeeded where others have 
failed? In regard to existence theorems, the reason lies in the 'solidarity' of 
probability measures on Polish spaces under 'weak' convergence, and in the 
fact that the martingale-problem method is ideally suited f or establishing 'weak' 
compactness of families of measures. This is because martingale inequalities 
automatically provide modulus-of-continuity properties for application of 
Arzéla-Ascoli-Prohorov criteria. (That 'practical' weak-convergence results 
are handled effectively is evidenced by the book's Chapter 11.) Itô's results 
are 'dense', and we can take limits! 

We now turn to the deeper uniqueness results. These are deeper than 
analysis can formulate! But the cunning martingale-problem method stays 
sufficiently close to analysis to be able to utilise its estimates. By contrast, the 
more probabilistic Itô theory is too subtle for analysis to be of any help ! 

12. Thumbnail sketch of proof of the uniqueness result. Let L be as at (2.1) 
but with b = 0. The Cameron-Mar tin-Girsanov change-of-measure theorem 
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allows us to 'add in (measurable) V later. Since a(*) is continuous, it is locally 
almost constant. Localisation techniques (probabilistic-with no analytic coun­
terpart) make it enough to deal with the case: a(>) is always close to the 
identity matrix, so L is 'appoximately' ^A. You can very easily derive directly 
from the definition that if Px (not known to be Markovian) solves the 
martingale problem for L starting from x, then, for X > 0, and ƒ G C£(Jld), 

R{(\f - Lf) = f(x) where R£(h) - f°° dt e"* ( h <> Xt(i*)Px(do>). 

(12.1) 

The idea of perturbation theory is to try to show that Rx is therefore 
determined because Rxg = (X — L)~lg(x)9 where we try to define 

(\-Lyl=VK(I-Kxr\ (12.2) 

where Kx =^22[^( - ) - SyldfljV^ and Vx = (X - f A)~! is the usual 
Brownian resolvent. The key fact with which we can work is provided by 
Littlewood-Paley theory (see Meyer [9] for a fine probabilistic proof), namely: 
for p> 1, the map dtdjVx from Cg>(Rd) to Lp(Rd) extends (uniquely) to a 
bounded linear operator on Lp(Rd). By holding a(-) everywhere close to the 
identity matrix, we can arrange that, for all X in an interval, \\Kx\\p < 1. 
While (12.2) is now meaningful in Lp(Rd) terms, we need to make a much 
more careful analysis (not done in this review!) to show that for p >\d,Rx is 
a bounded linear functional on Lp(Rd). Only then can we say that Rx is 
determined.9 By 'inversion of Laplace transforms', Px <> X~l is uniquely 
determined for all t (and this for every x). On conditioning the martingale-prob­
lem formulation relative to %t° in the sense of regular conditional probabilities, 
we find that 

[Px o ̂ J J f , 0 ] = PW o x^x (Px almost surely). 

The 'full' uniqueness of Px and its Markov property (the two are inextricably 
linked) follow immediately. (For Markov selection principles in the presence of 
nonuniqueness, see Chapter 12 of the book.) 

For their more general and much fuller results, Stroock and Varadhan use 
much deeper inequalities due to Jones, Fabes, and Rivière. The book's 
Appendix proves these estimates, and links such results to the theory of 
BMO, etc. 

13.1 have emphasised the great importance of the Stroock-Varadhan book. 
It contains a lot more than I have indicated; in particular, its many exercises 
contain much interesting material. 

For immediate confirmation of the subject's sparkle, virtuosity, and depth, 
see Mozart-sorry, I mean McKean-[l], The Stroock-Varadhan book proceeds 
on its inexorable way like a massive Bach fugue. Too much counterpoint; 
and, what is worse, Protestant counterpoint', said Beecham of Bach. But old 

9Argue (via localisation) that we can assume that a(-) is constant far out. Hence we can 
approximate a(-) uniformly by smooth ak(-). Now it is fairly easy to show that if g G C^5, then 
we can find fn in Cj? with \f„ — Lfn -» g in Lp. Thus, since R£ is continuous on Lp

t R£g may be 
determined from (12.1). 
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J. S. can be something of a knockout if his themes get hold of you. And his 
influence on what followed was (you may say) substantial. 
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For sometime beginning in the 1930's, Mathematics and Electrical En­
gineering had a fruitful liaison. From this liaison a new discipline, sometimes 
called Information Processing but more often Computer Science, was born. 
The infant discipline grew rapidly in strength and knowledge, and before long 
decided to set up its own establishment. Computer Science continued to 
prosper in this office-home which is today a model of industry and affluence. 
In it may be found many tools adapted from instruments invented by its 
parent disciplines, the ardor of whose liaison has meanwhile cooled. 

The mathematical tools of Computer Science include a new concept of real 
arithmetic. The set of 'real numbers' in a computer is finite, and disjoint from 


