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examples named after de Rham, Dolbeault, Hodge and Dirac are presented 
in considerable detail. The embedding proof of the index theorem is outlined 
along with that of the equivariant index theorem and the fixed point theorem. 
Various applications of these results are also presented. The book is quite 
successful in doing what it attempts. 

While the index theorem has not yet made it into graduate texts, these two 
books are a good beginning and given the ongoing importance of the index 
theorem should be useful to those wanting to learn about it. 
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Probabilities and potential, by Claude Dellacherie and Paul-André Meyer, 
Mathematics Studies, Volume 29, North-Holland Publishing Company, 
Amsterdam and New York, 1978, xii + 190 pp., $29.00. 

In the preface of his 1953 book [3], J. L. Doob wrote "Probability is simply 
a branch of measure theory, with its own special emphasis and field of 
application . . . . Using various ingenious devices, one can drop the interpre
tation of sample sequences and functions as ordinary sequences and func
tions, and treat probability theory as the study of systems of distribution 
functions. • • • such a treatment • • • results in a spurious simplification of 
some parts of the subject, and a genuine distortion of all of it." I believe that 
today the vast majority of probabilists would agree with Doob's statement of 
more than a quarter of a century ago. The thought of trying to state, let alone 
explain, the strong law of large numbers, for example, without using sample 
sequences seems ludicrous. The mathematical model commonly accepted 
today for treating sample sequences and functions is measure theory via the 
Kolmogorov axioms. As long as one deals with sequences most probabilists 
are happy with the measure theoretic foundations of the subject. However, 
this sense of contentment is rapidly dissipated when treating sample func
tions; that is, uncountable families of random variables. This is because, until 
quite recently, most probabilists were uncomfortable with the type of measure 
theory that is required to discuss sample functions. 

The study of sample functions of a stochastic process has a long and varied 
history. In [10], Loève has emphasized that Levy always thought in terms of 
sample paths and that this approach led to his beautiful results beginning in 
the middle 1930's on the structure of additive processes, the fine structure of 
Brownian paths, and the bizarre (at the time they were published in 1951) 
possibilities for the sample paths of a continuous parameter Markov chain. In 
spite of Wiener's construction of Brownian motion in the 1920's, there was 
hardly any theory of continuous parameter stochastic processes in 1935. 
Beginning about 1936 and culminating in his 1953 book, Doob developed a 
rigorous foundation for treating such questions. At about the same time 
Doob and later Snell were establishing the sample function properties of 
martingales and submartingales which were to be fundamental for later 
developments. These results were given a definitive treatment in the 1953 
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book. All of this required a serious use of measure theory and, consequently, 
Doob's was a lonely voice in the wilderness during much of this time. I 
believe it is fair to say that most probabilists in the late 1930's and the 1940's 
(and, perhaps, even more recently) were distressed by the type of measure 
theory used in sample function analysis. Of course, there were exceptions that 
proved the rule-an outstanding example being K. Ito who in 1942 give a 
rigorous treatment of Levy's theory of additive processes and in 1951 con
structed a wide class of Markov processes directly in terms of their sample 
paths. 

The following sheds some light on the state of the art in 1940. In the first 
paragraph of his paper [6], Feller gives an informal definition of a Markov 
process which is essentially the modern one. But he immediately qualifies it 
with the footnote: "This is, of course, not meant to be a strict definition; as a 
matter of fact, we shall be concerned only with the function P(T, X; t9 A) 
which will be defined purely analytically." Here P(T, X; t, A) is the transition 
function of X; that is, it is the conditional probability that X(t) G A given 
X(T) = x with T < t. At the top of the next page, Feller writes down the 
Chapman-Kolmogorov equations for P and then formally defines a Markov 
process as a process whose transition function satisfies these equations. Such 
definitions may be traced back through Feller's 1936 paper [5] to 
Kolmogorov's famous paper [9] in 1931. The point is that during this era, 
rigorous definitions were rarely attempted, and it was even rarer that they 
were taken seriously. 

This situation began to change rapidly in the 1950's, in no small part due to 
the appearance of Doob's book in 1953. At the same time a number of papers 
were appearing, mainly in the United States and the Soviet Union, dealing 
with sample function properties of Markov processes and the strong Markov 
property. This last property arose quite naturally when the process is consid
ered at random times which depend on the particular sample function such as 
the first time a process enters a given set. Special mention should be made of 
Chung's deep results on continuous parameter Markov chains during this 
period. Also Blumenthal, Doob, Hunt, Kinney, McKean, and Ray in the 
United States and Dynkin and Jushekevitch in the Soviet Union, among 
others, made important contributions during the period 1951-1956. 

Then in 1957-1958 Hunt's memoir [7] appeared. This was a monumental 
work of nearly 170 pages that contained an enormous amount of truly 
original mathematics. In retrospect it seems to me that probabilists were 
rather slow to appreciate what Hunt had accomplished. (On the other hand 
potential theorists were immediately struck by §15 in which Hunt showed the 
identity of a form of potential theory and the theory of Markov processes.) 
Undoubtedly this was because Hunt took measure theory seriously and this 
put off the great majority of probabilists even then. In addition, it must be 
stated that it was not easy reading. 

The most relevant part of Hunt's memoir for the present review is §2 in 
which he introduced Choquet capacity theory as a tool in probability theory. 
He used Choquet's theorem on the capacitability of analytic sets to show that 
the entrance time DA of an analytic set A is a random variable (i.e. measur
able) and more importantly that DA could be approximated by the entrance 
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times of compact subsets. Classically, even for Brownian motion, one could 
only treat Fa sets A, although before Hunt, Doob in [4] had proved the result 
in the Brownian case for capacitable sets using results of Cartan in classical 
potential theory. 

The mere recital of these facts masks what is involved since the result is 
false if one interprets measurability in the most naive way. To be precise 
consider the following situation. Let E be a complete separable metric space 
and let Q be the collection of all right continuous functions co: R+ -* E which 
have left limits at each / > 0. Here R+ stands for the nonnegative reals. For 
each t > 0 let Xt: £2 -» E be the coordinate map Xt(u>) = <o(f). The natural 
a-algebra $° on £2 is generated by these coordinate maps, that is S° = o{Xt: 
t > 0}. If A c E, then the entrance time of A is defined by 

DA(o)) = inf{/ > 0: Xt(o>) e A] 

where the infimum of the empty set is zero. If A is open, the right continuity 
of t -» Xt(u) trivially implies that { ^ < / } e f . (More precisely, {DA < t) 
EL <$} = o{Xs: s < t) so that DA is a "stopping time".) Recently Dellacherie 
[2] has shown that if A is closed and DA is S° measurable, then A is 
necessarily open! So far this is pure set theory-no probabiHty is involved. 
What is true is that if P is any probability measure on (fl, 30) and A is Borel 
(or even analytic) in E9 then DA is measurable relative to the completion of 9° 
under P. In fact for each t, {DA <t}is "analytic" over (Œ, ^ ) . Hunt himself 
did not prove results quite as general as this about D^-the actual results 
described above are due to Meyer. 

Beginning about 1960 a very rapid development of probabilistic potential 
along the lines of Hunt got under way. Of course, there were other important 
ideas being incorporated into the subject. Special mention should be made of 
the work of Kac. In particular his 1951 paper [8] was enormously influential. 
Also flowing into this stream were the ideas of Doob (conditional Brownian 
motion and boundary theory), Ito (stochastic calculus and (with McKean) 
diffusions), and Dynkin and his school (generators, additive functionals, 
diffusions), among others. At first the probabilistic side was concerned 
mainly with Markov processes, but after Meyer's work on the Doob decom
position of supermartingales in 1962-1963, more and more attention was 
directed to martingales. Of course, the martingale and Markovian aspect did 
not develop independently of each other, but rather as complementary facets 
of a single theory. For example, Meyer's proof of the Doob decomposition 
was a generalization of earlier work of Volkonski, Sur, and Meyer, himself, in 
the theory of Markov processes. During the 1960's and into the 1970's a large 
arsenal of tools was developed, mainly by Meyer and those working under his 
influence, for attacking various problems concerning Markov processes, 
martingales, stochastic integrals, and the like. This body of knowledge has 
come to be known as the "general theory of processes" or sometimes as 
"Strasbourg probability". 

The book under review is the first volume in a projected multi-volume 
exposition of probability and potential theory. As the authors point out in 
their preface, the present volume contains no potential theory and only the 
foundations of stochastic processes in probability. (The manuscript of a 
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second volume dealing with martingale theory, but not stochastic integrals, is 
finished and should appear shortly, at least in French.) This first volume 
contains four chapters. The first two are short chapters in which the authors 
collect some facts from measure theory and introduce the basic definitions of 
probability theory. The first two parts of Chapter III discuss analytic sets and 
capacity theory. The treatment is much closer to that in the first edition of 
this book [11] than to that in Dellacherie's book [1]. The third part treats 
bounded Radon measures and includes the theorems of Kolmogorov and 
Prokhorov and a discussion of narrow (weak) convergence. The first two 
parts of Chapter IV contain the foundations of the theory of continuous 
parameter stochastic processes. The remainder of Chapter IV begins the 
discussion of the general theory of processes and carries it about as far as one 
can go without using martingales. Thus it contains the basic definitions of 
optional and predictable times and a-algebras, the measurability of debuts, 
and the section theorems. The projection theorems which require martingales 
are deferred to Volume II. The treatment here differs from that in Dellacherie 
[1] in that the "usual hypotheses" are not invoked as a blanket assumption 
from the beginning. As the authors point out this is not done for the sake of 
generality, but because in many applications one must deal with several 
(uncountably many) probabilities simultaneously in which case the usual 
hypotheses, involving completeness, are inappropriate. Finally there are very 
extensive indices of terminology and notation which greatly enhance the use 
of this book as a reference. 

The general theory of processes is really the study of a filtered probability 
space (£2, f, §,, P). Here (£2, f, P) is a probability space and (^t)t^o ^ **** 
increasing family of sub-a-algebras of <$. Perhaps it is surprising that one can 
develop so much deep, beautiful, and important probability in such a general 
framework, and that such a theory should have important applications to 
many areas of probability such as Markov processes, martingale theory, 
stochastic differential equations, and filtering theory. For example in my own 
field of Markov processes, general theory has been used to attack and solve 
many problems that seemed, to me at least, unapproachable fifteen years ago. 
Having said all this, perhaps I should emphasize the obvious: it is also true 
that much of modern probability falls outside of the scope of this theory. 

The general theory of processes has become a somewhat controversial 
subject. Some probabilists tend to denigrate it as too abstract, arid, or lacking 
in probabilistic content. Although I can sympathize with those who find the 
measure and set theory distasteful, I believe that it has proved itself to be an 
important part of probability. Only time will determine the ultimate impor
tance of this theory which, at the moment, is enjoying a period of vigorous 
growth. In the meanwhile the current generation of probabilists can only be 
grateful to Dellacherie and Meyer for their thorough exposition and hope that 
they do not tire in the task that they have set themselves. 
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The past twenty years have witnessed a revolution in the field of ordinary 
differential equations. It is not uncommon to attend a seminar on differential 
equations and not even hear the words differential equations, let alone see 
one written on the board. The "in phrase" these days is dynamical systems, 
and the language spoken is often the language of topology and differential 
geometry. Ordinary differential equations by the famed Soviet mathematician 
V. I. Arnold is a superb introduction to the modern theory of differential 
equations, and while reviewing this book, it is instructive to take a closer look 
at the profound changes that have occurred in this field. We begin with the 
fundamental concept of a dynamical system. 

Consider a system that is evolving in time. Let x denote the initial state of 
the system, and g'x its state at time ty with g°x = x. The set M of all possible 
states is called the phase space of the system, and the individual states x are 
called phase points. Suppose, moreover, that the mappings g' satisfy the 
group property 

g'+'x = g'(gsx) (1) 
and that g' and (g ' ) _ 1 satisfy appropriate continuity conditions. The set of 
mappings g', together with the phase space M is called a dynamical system. 

Dynamical systems occur very naturally in the study of ordinary differen
tial equations. Let 

x = v(x) (2) 

be a differential equation defined on a domain M of n dimensional Euclidean 


