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Given a geometry there are canonically associated groups. For example, 

geometries arising from bilinear forms yield the symplectic and orthogonal 
groups and, in the latter case, important subgroups such as the rotation 
group, the spinorial kernel and the commutator subgroup. In both cases 
appropriate factor groups (the projective groups) produce families of simple 
groups. These classical groups have held a prominent position in 20th century 
mathematics and the algebraic aspects are treated in the classic works of 
Artin, Dieudonné, Eichler, and O'Meara ([A], [Dl], [D2], [E], [O'M]). Of 
primary importance are the investigations on generators, structure, isomor
phisms and automorphisms. 

It is natural to pose the inverse problem-given a group G of a certain type 
is there a geometry associated to G and what is its character. This is part of 
the investigation of Tits in [T] who reminds us in the introduction of the 
construction of a complex projective space from SLn(C) by using the maximal 
parabolic subgroups as subspaces; incidence of subspaces occurring when the 
intersection of two maximal parabolics is parabolic. Along a slightly different 
line are the works of Bachman, Lingenberg, Sperner, and Strubecker, and the 
book under review. 

A fundamental object and object of study in Metric planes and metric 
vector spaces is that of an S-group. Indeed, 5 of the 8 chapters and approxi
mately 3/4 of the pages are devoted to this topic. This concentration will be 
reflected in the review. 

An S group is a pair (G, S) consisting of a group G generated by a subset S 
of the full set / of involutions subject to the following axiom 
AXIOM S 

a ^ b and abx, aby, abz G / implies xyz G S. 

The relation K defined by 

(a, b, c) G K <=> abc G / (*) 

is a ternary equivalence relation on the set S, meaning that K is a subset of 
S X S X S satisfying: 

(El) (Reflexivity). If a, b, and c are not mutually distinct, then (a, b, c) G K. 
(E2) {Symmetry). If {a, b, c) G K and TT is a permutation of {a, b, c] then 

(7r(a), ir(b), TT(C)) G K. 

(E3) (Transitivity), a^b and (a, b,c) G K and (a, b, d) G K imply that 
(a, c, d) G K. 

Axiom S is needed to verify (E3) only. 
If S contains at least two elements the pair (S, K) is called an incidence 

structure', the elements of S are called lines and are denoted by lower case 
latin letters. Three lines a, b, c are concurrent if and only if (a, b, c) G K. The 
subsets S(a, b) = {x\(a, b, x) G K) are called points and are denoted by 
capital letters. Thus a point is a collection of lines all of which are concurrent 
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with two given lines. A line a is said to be incident with a point B if and only 
if a G B. A basic lemma, proved for general incidence structures and not just 
for S groups, then yields the following familiar incidence relations: 

a, b E: A, B implies a = b or A = B. 
Three lines a, b, c are concurrent if and only if there is a point A incident with 

each of a, b, and c. 
For every point A, there are at least two lines incident with A. 
In this context the incidence structure (S, K(G, S)) is called the group plane 

of the S-group. 
More generally, and this is the author's initial point of departure, an 

incidence structure is a pair (L, K) consisting of a set L having at least two 
elements (the lines) and a ternary equivalence relation K on L i.e. K is a subset 
of L X L X L satisfying (El), (E2), and (E3). The points are the subsets 
L(a, b) = {x\(a, b, x) G K}; concurrency of lines and incidence of points and 
lines are defined as for S groups. 

As an example we consider a three-dimensional metric vector space (V, Q) 
defined over a field K. Here Q is a quadratic form on the vector space V and 
Q is not identically zero on V. The lines L = L(V, Q) are the anisotropic 
lines of V and the ternary equivalence relation K = K(V, Q) is given by 

<V, Q) - { « ^ > , <B), <C»|fi(i4), Q(B), 0 (C) 

=£ 0 and Ay B, C are linearly dependent}. 
This is a fundamental example of an incidence structure that is ^-connected, a 
concept of crucial importance in the book; to define this term we return to 
the general setting of an incidence structure (L, /c). Two points A and B are 
said to be connected (by a line) if A n B ^ 0 . The point A is A-connected 
(dreiseitverbindbar) if A is connected with at least one point of any triple B9 

C, D of distinct, pairwise connected points. The point A is 1-A-connected if it 
is A-connected and if there exists at least one such triple of points B, C, D for 
which A is connected with exactly one point of the triple. We say that A is 
3-A-connected, or completely connected, if A is connected with all points. A 
A-connected point that is neither completely connected nor 1-A-connected is 
called a 2-A-connected point. An incidence structure (L, K) is called ^con
nected if every point of (L, K) is A-connected. 

One of the main theorems in the book renders equivalent complete S-group 
planes and the incidence structures of three-dimensional metric vector spaces; 
an S-group plane is complete if it is A-connected and contains a quadrilateral 
(i.e. four lines no three of which are concurrent) or if S contains exactly two 
lines or four lines, three of these concurrent and orthogonal to the fourth. The 
theorem proved is: 

MAIN THEOREM 6.1. Every complete S-group plane is isomorphic to the 
incidence structure over a suitable three-dimensional metric vector space (V, Q) 
such that dim V± < 2. 

Conversely, any incidence structure I{V, Q) over a three-dimensional metric 
vector space (V, Q) such that dim K x < 2 is isomorphic to a suitable complete 
S-group plane. 

In the preface the author writes: 
This book is devoted to a certain domain of plane geometry for which both 
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incidence and metric concepts, such as orthogonality or reflections, are defined. 
The theory developed can be regarded as 
(a) a purely geometric theory based on the concept of incidence structures with 

orthogonality or with reflections, mainly as a treatment of Euclidean and 
non-Euclidean planes and certain subplanes of these planes, 

(b) a theory of three-dimensional metric vector spaces with their natural 
geometric interpretation, 

(c) a theory of special types of S-groups and their group planes. 
These areas of plane geometry, (a) to (c), are only different representations of 

the same theory, and one of the most important tasks of the book is to verify 
these relations. 

The theorem cited above is the equivalence of (b) and (c). 
As an example of the nexus between (a) and (c) we cite the S-group 

theoretic versions of 2 classical geometric theorems; the theorem on the 
altitudes of a triangle and the theorem of Desargues. 

In the group plane of an 5-group (G, S) there is a natural notion of 
orthogonality given by the binary relation co 

(a, b) G <*)<=$> ab G J. 

This relation is irreflexive and symmetric and brings to mind the case of 
permuting symmetries in orthogonal groups. The theorem on the altitudes of 
a triangle then takes the following form: 

Let (abc)2 ^ 1 and au, bv, cw G J; beu, cav, abw G / . Then uvw G / . 
Thus the assumptions, stated geometrically, are that a, b and c are noncollin-
ear lines, a and u, b and v, and c and w are orthogonal lines and b, c, u; c, a, 
v and a, b,w are collinear. The conclusion is that the altitudes u, v, and w are 
collinear. 

FIGURE 1 

Desargues' theorem has the following form: 
Suppose we have the following configuration of points and lines in the S-group 

plane of (G, S): gt, at for i = 1, 2, 3 and o,bx,b2 are lines', O, Pt, ft, At for 
i = 1, 2, 3 are points', and the following incidences hold: gt G O, Pt, ft; 
gk & />,., ft; o G A,; Pt ^ ft for i, k = 1, 2, 3 and i * k. Also a, G At, Pk, Px 

for any cyclic permutation i, k, 1 of 1, 2, 3. Also bx G Ax, ft, ft; b2 G 

A2, Qv e3; o ï o . 
The points Px, P2, P3 and the points ft ft, ft are not collinear. Assume that 

the points 0,Ax,A3 are completely connected. Then there exists a line b3 such 
that b3 G A3, ft, ft. 
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FIGURE 2 

Now return to the setting of metric vector spaces. The radical of (V, Q), 
denoted rad(F, Q), is defined in the usual fashion; it is an isotropic subspace 
of V i.e. Q(x) = 0 for all x in rad(F, Q). Several authors use the term totally 
isotropic for such a subspace. If T is an isotropic subspace of maximal 
dimension the number dim T — dim rad(F, Q) is well defined and called the 
Witt index of (V, Q); denoted ind(F, Q). Up to isometry there are 5 distinct 
types of three-dimensional metric vector spaces; each type determined by the 
values of ind(K, Q) and dimrad(F, Q). The respective incidence structure 
I(V, Q) = (L(V, Q), (V, Q)) is called 

ind(K, g ) I dimrad(F, Ö) 

0 
0 
0 
1 
1 

0 
1 
2 
0 
1 

an elliptic coordinate plane, if 
a Euclidean coordinate plane, if 
a Strubecker coordinate plane, if 
a hyperbolic-metric coordinate plane, if 
a Minkowskian coordinate plane, if 

Synthetic definitions of these 5 planes are provided within the context of 
complete S-group planes by means of the following axioms: 

AXIOM H. There exist two distinct 2-A-connected points which are connected 
by a line. 

AXIOM EM. There exist two 2-A- connected points that are not connected by a 
line. 

AXIOM Al. There exists a 1-A-connected point. 
The converses of these three axioms are denoted by -iff, -\EM, and -iAl, 

respectively. 
For the sake of brevity we consider in the sequel only the complete S-group 

planes that are A-connected and contain a quadrilateral. With this convention 
a complete S-group plane is called: 

an elliptic plane, if (~\H), -\EM, —i Al holds 
a Euclidean plane, if -i H, EM, -i Al holds 
a Strubecker plane, if H, EM, (-iAl) holds 
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a hyperbolic-metric plane 9 if H, {-\EM), Al holds 
a Minkowskian plane, if (-1 / / ) , EM, Al holds. 

(On the right assumptions that are bracketed follow from the ones not in 
brackets.) 

In a long series of lemmas, propositions, and theorems, the metric and 
synthetic versions of these five planes are shown to be equivalent and 
numerous other equivalences are established. To taste the flavor of a typical 
theorem we must consider projective incidence structures and substructures and 
Pappian or Desarguesian projective incidence structures. 

Let (P, L, I) be a projective plane, i.e. two disjoint sets P, the points, and 
L, the Unes, and an incidence relation I c P X L satisfying: 

(PI) Given any pair of points there exists a line incident with both. Given any 
pair of lines there exists a point incident with both. 

(P2) If both of the points A, B are incident with both of the lines c> d, then 
A — B or c = d. 

(P3) There exist four points no three of them incident with the same line. 
Then three lines a, b,cinL are concurrent in the projective plane if there is 

a point A in P such that A is incident with a, b, and c. 
Set K = {(a, b, c)\a, b,c G L and a, b, c are concurrent}. 
Then (L, K) is an incidence structure called a projective incidence structure. 

A projective incidence structure is called Pappian or Desarguesian if the 
theorem of Pappas or Desargues, respectively, is valid in the corresponding 
projective plane. 

If L' is a subset of L and U has at least two elements then (Z/, K') is an 
incidence structure, where /c' is the restriction of K to L' X L' X L' and 
(L', K') is called a substructure of the incidence structure. There are four 
important substructures of the projective incidence structure: 

(a) L \ L' contains exactly one line. Then (L\ K') is called an affine incidence 
structure. 

(b) L\ L' consists of a point, thus of the set of lines defining a point in the 
projective incidence structure (L, K). Then (Z/, K') is called a star-complement. 

(c) L\ L' consists of exactly two distinct points. Then (Z/, K') is called a 
double star-complement. 

(d) L\ L' is an oval i.e. a set of lines containing at least three lines such that 
no three mutually distinct lines are concurrent. We call (L', K') an oval-comple
ment. 

Typical of the equivalence appearing in the lengthy Chapter 6, Complete 
5-Group Planes, are: 

THEOREM 6.15. For an S-group plane E the following are equivalent up to 
isomorphisms: 

(a) E is a Euclidean plane, 
(b) E is an affine incidence structure, 
(c) E is a Pappian affine incidence structure, 
(d) E is a Euclidean coordinate plane. 

THEOREM 6.28. For an S-group plane E the following are equivalent up to 
isomorphisms: 

(a) E is a Minkowskian plane, 
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(b) E is a double star-complement, 
(c) E is a Pappian double-star complement, 
(d) E is a Minkowskian coordinate plane. 
The topic of complete metric planes is the last I will mention in any detail. A 

complete metric plane is a triplet (L, K, $) such that (L, /c) is a A-connected 
incidence structure that contains a quadrilateral and $ is a map of L into the 
set of axial collineations of (L, K) such that a® is a collineation with axis a for 
all a in L and, for aa = a$ and S = im O, the condition [S] is valid. 

oaoboc EL S £ (a, 6, c) G K. [S] 

Complete metric planes and metric planes over three-dimensional metric 
vector spaces are related by the following: 

MAIN THEOREM 6.31. Up to isomorphisms the complete metric planes are all 
the metric planes over three-dimensional metric vector spaces (V, Q) with 
dim V1- < 1. 

Returning again to the subject of S-groups and S-group planes the main 
theorem in Chapter 7 provides an embedding of any S-group plane with 
completely connected points in a complete metric plane and the final chapter, 
Chapter 8, treats the topic of finite S-groups. The latter includes, without 
proof, some interesting results of Ott relating the structure of the group G to 
the geometry of the group plane of G. 

Having outlined what I consider to be the highlights of the book I'll now 
provide a few critical remarks. The first concerns the author's definition of 
the orthogonal group-defined as the group generated by the reflections on 
anisotropic lines, (on p. 6). Admittedly, it is noted that this definition is not 
the customary one and, it is natural considering the spirit of 5-groups that 
permeate throughout the book. However, no mention is made of the Cartan-
Dieudonné theorem which, of course, would render the equivalence of the 
author's definition and the customary one. In particular, there is no mention 
of the exceptional case of Cartan-Dieudonné which is present for a four-di
mensional hyperbolic space over a field with two elements. 

In the same equivalence class of criticisms of omissions I'll cite the 
omission of Dieudonné's two classic works [Dl] and [D2]. This is puzzling, 
especially when one notices the inclusion of T. Y. Lam's The algebraic theory 
of quadratic forms, and O. T. O'Meara's, Introduction to quadratic forms, (both 
of these books are excellent, to be sure, but much less in the spirit of the book 
under review than those of Dieudonné). 

There are numerous allusions to examples tha» exist jathe tii&n providing 
the examples or even indicating how they are constructed. This is indeed 
unfortunate in the initial section on A-connectedness; for example on p. 14 it 
is stated..."the remaining points may be either 2- or 3-&-connected-either case 
can occur in specially constructed examples" yet there is no indication as to 
how to construct these examples. On p. 24 in the section on incidence 
structures with reflections it is asserted "there exist incidence structures with 
reflections in which no meaningful orthogonality can be defined." And again 
the last sentence in Chapter 4 cites an equivalence which holds in an £-group 
plane that contains a quadrilateral but which does not hold in an arbitrary 
S-group. 
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There are no exercises in the book unless one counts the "proof left to the 
reader" type. Indeed, a good beginning on a set of exercises might include the 
above cited examples, and others, with comments and, perhaps, hints. 

Some errors are noticeable although certainly not in any great number. In 
the construction of a Euclidean plane on p. 18 A' is assumed to be an 
arbitrary field yet k is chosen to be an element of K such that — k is not a 
square. Clearly k cannot be quadratically closed. This same error is repeated 
on p. 23. 

In Theorem 4.2 the existence of a line g is implied by the statement of the 
theorem; yet the proof of the theorem seems to assume that g exists. 

There are relatively few typographical errors, a remarkable feat considering 
the complexity of some notation and the abundance of subscripts. 

This book is a moderately good addition to the literature; its good features 
outweigh its shortcomings. It should be accessible to patient and persistent 
beginners and no doubt will be a valuable source for future work on the 
geometric theory of S-groups. 

REFERENCES 

[A] E. Artin, Geometric algebra, Interscience, New York, 1957. 
[Dl] J. Dieudonné, Sur les groupes classiques, Actualités Scientifiques et Industrielles, no. 1040, 

Hermann, Paris, 1948. 
[D2] , La géométrie des groupes classiques, 3ième éd., Ergebnisse der Mathematik und 

ihrer Grenzgebiete, Band 5, Springer-Verlag, Berlin and New York, 1971. 
[E] M. Eichler, Quadratische Formen und orthogonale Gruppen, Springer, Berlin, 1952. 
[O'M] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, Berlin-Göttingen-

Heidelberg, 1963. 
[T] J. Tits, Buildings of spherical type and BN-pairs, Lecture Notes in Math., no. 386, 

Springer-Verlag, Berlin-Heidelberg-New York, 1974. 

E. A. CONNORS 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 2, Number 3, May 1980 
© 1980 American Mathematical Society 
0002-9904/80/0000-02 26/$01.75 

Shape theory, by Jerzy Dydak and Jack Segal, Lecture Notes in Math., vol. 
688, Springer-Verlag, Berlin-Heidelberg-New York, 1978, vi + 150 pp., 
$11.80. 
Shape theory has come to loom large on the horizon of topology. The 

literature in the area has grown enormously. More and more research papers 
assume that the reader is familiar with the results and techniques of shape 
theory. For the reader who does not have this familiarity, but who wishes to 
learn, there are difficulties. He may struggle through a paper only to find that 
the results are superseded by more powerful and completely different tech
niques. Some results have "standard" errors which may or may not be 
corrected in the literature. What the newcomer will probably find most 
irritating is the teeming multitude of approaches to shape theory that he will 
find. Each approach is derived from a particular viewpoint according to the 
whim of its originator. Some of these approaches are confused and capable of 
permanently beclouding the mind as the searcher seeks to find the depth that 
is not there. Some approaches are so abstract that even experienced mathe
maticians marvel in wonder at the meaning of it all. To those who are 


