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applications in approximation theory. A large part of the book is devoted to 
the following three central problems. In each case the problem can be posed 
in terms of Tchebycheff systems, generalized Tchebycheff systems, or weak 
Tchebycheff systems. I. If a GTS is given, does it contain a GTS of order one 
less? II. If G is a GTS, does there exist a function ƒ such that G u {ƒ} is a 
GTS? III. If a function ƒ and an n are given, does there exist a GTS of order n 
containing/? 

For a hint as to how such questions arise, let us cite a theorem of Krein: If 
{1, x,..., xn, ƒ} is a Tchebycheff system on [-1, 1], then the polynomial p 
of degree at most n which minimizes / l i | / — p\ is the polynomial which 
interpolates to ƒ at the points cos km/(n + 2), 1 < k < n + 1. 

The problems mentioned above do not have clear-cut answers in all cases, 
and work on them continues. Zielke's account of the subject is therefore not 
final, but it is nevertheless a valuable summary of the current status. 

E. W. CHENEY 
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Applied mathematics: An intellectual orientation, by Francis J. Murray, 
Mathematical Concepts and Methods in Science and Engineering, Volume 
12, Plenum Press, New York-London, 1978, xiv + 255 pp. 

It is essential from time to time, as the academic world revolves, and as 
each revolution carries us to new heights of specialization, to refresh our 
understanding of relationships among disciplines. What has history to do with 
psychoanalysis, music with computer science, economics with ecology, lan
guage with linguistics? It may also be useful on suitable occasions to ask 
ourselves what a given discipline actually is in the contemporary academic 
context. Professor Murray, Director of Special Research on Numerical Anal
ysis at Duke University, has produced a book that can be regarded as the 
mark of such an occasion. What, in the rising clamor of academic voices 
fighting to be heard, is Applied Mathematics? Then, having done our best 
with that, we can examine the relationship forming a central theme of 
Murray's book. What has mathematics to do with physics? The questions 
themselves, entirely aside from the character of our answers tend to raise red 
flags among pure mathematicians. The prospect of finding today's theorem in 
the design of tomorrow's missile system, or even in next year's solar engines, 
is discordant with what has become the conventional view of academic 
mathematics. Here the strongest work is the most abstract and, a fortiori, 
appHcation is evidence of weakness. It may not be unfair to express this view 
in paraphrase of a remark by Clemenceau: applied mathematics bears the 
relation to mathematics that military music bears to music. 

Readers of the history of mathematics need not be reminded that the 
growth of support for such attitudes among the majority of our contem
poraries-there are, of course, a few virtuoso mathematicians who practice 
and defend the longer tradition-is recent and swift. To ask for a definition of 
useful mathematics would have been as puzzling to our academic forebears as 
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a similar question on the nature of science in general. Their answer would be 
simple and vigorous: the strength of any piece of knowledge is to be found in 
the step it takes toward our understanding of the world, and thus ultimately 
to the guidance of our lives. True enough for the natural sciences, we might 
respond, but have we not matured to the point where the mind of the 
mathematician works in a world of its own design, carefully quarantined 
against infection by the motion of atoms and stars? Not possible, say the 
disciples of Plato and Kant. Your mind is made of atoms and your dream of 
journeys to the stars is fast becoming real. Try as you may to cast yourself 
adrift, you still float within the cosmos of which you are the only intelligent 
part, and your mathematics is neither more nor less than the study of how 
your intelligence functions. 

A thoughtful student of the psychological foundations of mathematics 
might therefore begin to identify its applications with a set of ideas forming a 
gestalt within the subject itself. From these roots, planted deeply in the 
human mind, grow the branches that support our only systematic compre
hension of nature, and finally the rich harvest of tools and processes that 
extend our control of the world in ever widening circles. The history of 
mathematics lends great strength to the metaphor of continuous outward 
development, just as it confirms the complementary idea of an inward flow of 
stimuli from natural science back to the mathematical imagination. When we 
look at the question against this background, we find no clear boundary 
separating the "pure" discipline from its applications. What we find instead 
are numerous points along the single tree of knowledge where individuals 
discover maximum comfort and reward. And the finest mathematicians of the 
past, as Professor Murray tells us once again, were those of widest range and 
longest vision both outward and inward. 

Physicists take exceptional pride in the fact that more than a few of the 
most dramatic chapters in the story of mathematics grew from the study of 
natural phenomena. Discovery of the laws of motion and invention of the 
calculus was the work of one mind; description of electromagnetism in the 
form of four beautifully coupled differential equations was the work of 
another. And two magnificent triumphs in the physics of our own time-
-general relativity and quantum mechanics-found their natural language in 
deep mathematical structures. But mingled with our pride in the long and 
happy marriage between mathematics and physics is an uneasy sense of 
growing separation and possible divorce. In an authoritative but unpublished 
essay on the subject, Freeman Dyson offers an explanation and a cure. 
Interests began to diverge, he says, when Maxwell, who lacked the expository 
gifts of Newton and his followers, chose to express his ideas in the form 
heavily burdened with unnecessary mechanical baggage, rather than as a 
challenge clear and bold enough to attract the attention of working mathema
ticians. As a result of this misfortune, added to preoccupation with pressing 
business of their own, mathematicians failed to grasp a rich opportunity. "If 
they had taken (Maxwell's) equations to heart as Euler took Newton's," 
writes Dyson, "they would have discovered, among other things, Einstein's 
theory of special relativity, the theory of continuous groups and their tensor 
representations, and probably large parts of the theory of partial differential 
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equations and functional analysis . . . simply by exploring to the end the 
mathematical concepts to which Maxwell's equations naturally lead." (In his 
famous lecture on the mathematics of special relativity, Hermann Minkowski 
spoke in the same way, lamenting the fact that mathematicians had not 
recognized the elegance of the Lorentz group long before it was forced upon 
them by the physicists.) Following Maxwell, Dyson goes on to say, physicists 
resorted to a "desperate remedy" to close the growing gap: physics itself split 
into the "theorists" who understood enough mathematics to describe new 
phenomena, and the "experimentalists" who labored with equipment in more 
or less complete ignorance of mathematical theory. The new scheme worked 
extremely well, bringing spectacular success to the physics of the early 
twentieth century. During that golden age, until about 1940, theorists like 
John von Neumann and Hermann Weyl acted as strong bridges between 
abstract mathematics and laboratory physics, and a handful of highly gifted 
physicists-Enrico Fermi was the best example-were still able to keep up with 
everything. But the last forty years have witnessed new and finer splitting 
among the theorists themselves. One group communicates with mathemati
cians, the other with experimentalists; they find it increasingly difficult to talk 
to each other. 

Despite the promise of his subtitle, Professor Murray provides neither 
compass nor map with the help of which his readers might find a reasonable 
path through the tangle of distractions and conflicts surrounding his subject. 
Indeed, he has chosen not to recognize the scent of trouble in the air. The 
denigration of applied mathematics by purists, the loss of continuity from one 
field to the next, the slipping away of physicists and other students of nature, 
the atomization of discipline and the disappearance of generalists-these are 
matters which, although surely of interest and concern to students preparing 
for careers in mathematics, enjoy no explicit treatment in Murray's book. 
And yet a hint of their presence will be sensed by perceptive readers who 
wonder what developments in contemporary mathematics can be compared 
with magnificent scientific achievements of the past. Murray reviews at length 
the mathematical treatments of planetary motion, analytical dynamics, mani
folds and affine connections, elastic deformation, thermodynamics and prob
ability. He also surveys the histories of arithmetic and geometry; most of his 
book, in fact, is a précis of more or less ancient developments of mathemati
cal tools for physical science. But he has little to say about the climactic 
events of the twentieth century: after seven pages of mathematics leading to 
the Riemannian metric, we read only that "this yielded a more precise 
description of gravitation in the solar system;" the paragraph or two mention
ing quantum mechanics exhibit no mathematics; recent results in general 
relativity, catastrophe theory, linear programming, econometrics, mathemati
cal biology and information theory get no space at all. 

The only example of modern analysis Murray chooses to treat in detail-it 
occupies a quarter of the first substantive chapter-is a study of motion of 
aircraft in flight, its aim being "to illustrate the ideas associated with technical 
simulations, in particular, block diagram, math model, flow chart, and 
scenario . . . " The analysis appears to have been published in a technical 
report to the United States Naval Training Center in Orlando. The rigid-body 
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dynamical theory for such a problem is entirely Newtonian and the mathe
matical level would have been well within the grasp of a nineteenth-century 
physicist. What gives the exercise contemporary flavor, of course, is its 
application to the design of flight simulators for pilots in training. But this 
surprising choice from what must certainly be a rich stock of current 
problems can be most easily understood as an accomodation to Murray's 
conception of useful research. "Applied mathematics," he writes, "is usually 
part of a large effort under contract with the Federal Government and based 
on scientific and technical understanding. It is a team effort and documenta
tion is essential." The same theme pervades the introductory chapter, where 
we find three exhaustive tables of data on government expenditures for 
Research and Development over the years. Such things are doubtless interest
ing and important to students planning careers in Federally supported re
search, but it is nonetheless astonishing to find budget figures and the 
"documentation" of a Government contract on the opening pages of an 
"intellectual orientation" for readers who are likely to be inclined different
ly-tempted, perhaps, to emulate giants of the past whose accomplishments 
occupy the rest of the book. 

Both in the design and in the execution of this work, Professor Murray fails 
to produce the eloquent defense of useful mathematics that we hope some
where to find. Far from attracting gifted students to a noble profession by 
making a strong case for broadening and intensifying the influence of 
mathematics on human affairs, this book-especially in its opening chap
ters-can only strengthen the position of the purists. Examined more narrowly 
as a textbook of history and technique, the book reveals other smaller flaws. 
Its organization is haphazard, as if the manuscript were stapled together from 
short pieces produced for a variety of different purposes. In some cases there 
is little connection between what Murray says he is doing and what he 
actually does. Why should the study of invariant tensors be a part of Natural 
Philosophy while the kinematics of rigid bodies falls partly into the chapter on 
Simulations and partly into Energyl The summary of a section on group 
theory promises a treatment of its significance in modern physics. We expect, 
of course, a reference to Wigner's contributions to quantum mechanics or to 
recent work in the theory of elementary particles. We read instead that the 
mechanics of special relativity, governed by the Lorentz group, gives an exact 
description of the motion of the planet Mercury-which is in fact not true: the 
problem was solved in the framework of general relativity. The style of 
Murray's writing is itself a threat to clarity. Here, from a section entitled 
"Intellectual ramifications, is a specimen far from untypical: "Problem 
mathematics is necessarily associated with the idea of human affairs based on 
a mutual understanding arrived at by logical means." Finally, the exercises at 
the ends of chapters of this book deserve notice. Some are mysterious ("List 
the propositions in Euclid that are incorrect;") some are incomplete ("An 
airplane makes a tight turn so as to 'pull 8 g's.' What was the minimum radius 
of curvature?") some are meaningless ("Show that a mole of one perfect gas 
differs from that of another perfect gas only in density;") some go beyond the 
point of reasonable demand ("What problems were considered by Archi
medes? Cavalieri? Wallis? Newton? Euler? Laplace? Gauss? Cauchy? Rie-
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mann? Weierstrass? Cantor? Borel? Lebesgue? Hubert? L. Schwartz?'') and 
some are simply impossible ("There are two major types of nuclear explosive 
devices. Describe the mathematical formulation of the action in each case.") 

At the close of his provocative essay on the gap between disciplines, 
Freeman Dyson writes of ways to bring mathematics and physics back 
together. It is at present not realistic, he says, to expect members of one group 
to make original contributions to work of current interest in the other. The 
fields have drifted too far apart and their union is too large for a single 
intelligence to span. What can be done, at least for the time being, is to 
establish contact through papers of a special kind: when a new result in one 
field shows promise of attracting interest in the other, a review article gathers 
up points of contact and proposes areas of collaboration. It will, of course, 
take a change of attitude, the invention of new kinds of reward, and a few 
reforms in graduate education to make this happen. It is perhaps just barely 
possible. And what about a more intimate reconciliation of the sciences in the 
long future? Here our imaginations must range more freely. The solution-a 
dangerous one, says Dyson-lies in the hands of the biologists who will 
ultimately discover ways of extending human memory and intelligence to the 
point where the whole of science is once again comprehensible to one human 
being. Meanwhile we must do what we can with the natural mind as it is 
given to us. 

An excellent book on the present status and possible future of useful 
mathematics would be a step in the direction that Dyson envisions. Professor 
Murray's first attempt falls short of the requirement. Perhaps he, or another 
mathematician of equal distinction and equal dedication to the task, will give 
it another try. 

EVERETT HAFNER 
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Relativistic theories of materials, by Aldo Bressan, Springer Tracts in Natural 
Philosophy, vol. 29, Springer-Verlag, Berlin-Heidelberg-New York, 1978, 
xiv + 290 pp. 

Einstein's general relativity is primarily a unification of gravity with space-
time geometry: the curvature of a four-dimensional Lorentzian manifold 
signals the presence of gravity. But the theory can be regarded as a complete 
description of at least macrophysics; it necessarily deals with electromag
netism and matter in addition to gravity. In fact its most important specific 
postulate, the Einstein field equation G = T, describes, roughly speaking, 
how matter and electromagnetism generate gravity. The equation relates a 
purely geometric object with a physical, almost anti-geometric one: G, the 
Einstein curvature, is determined at a spacetime point by certain averages of 
the sectional curvatures there; T, the stress-energy tensor field, is determined 
by electromagnetism and matter. Einstein's own attitude toward this contrast 
is given, for example, by his comments on the equation in his autobiographi
cal contribution to Albert Einstein, Philosopher-Scientist (Paul A. Schlipp 


