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Generalized functions: Volume 1, Properties and operations, xviii + 423 pp.; 
Volume 2, Spaces of fundamental and generalized functions, x + 261 pp.; 
Volume 3, Theory of differential equations, x + 222 pp.; Volume 4, Applica
tions of harmonic analysis, xiv + 384 pp.; Volume 5, Integral geometry and 
representation theory, xvii + 449 pp.; by I. M. Gel'fand and G. E. Shilov, 
Academic Press, New York and London, 1977. 

At the beginning of the 1950's the theory of generalized functions was in 
somewhat the same state that nonstandard analysis is in today. Mathemati
cians were by no means of one mind as regards the benefits of the theory. 
Critics felt that it was an overblown way of describing a modest but useful 
scheme for making computations in one area of harmonic analysis: the 
Heaviside calculus. Even those who were enthusiastic about the theory 
regarded distributions as shadowy entities like quarks or mirons. It was felt 
that to understand the theory one had first to become familiar with a 
formidable array of topics in abstract analysis: barrelled topological vector 
spaces, Montel spaces and so on. Graduate students were discouraged from 
going into distribution theory and advised to do Schauder-Leray estimates 
instead. 

By the end of the 50s this situation had completely changed. Generalized 
functions had come to be viewed as an indispensible tool in almost every area 
of analysis. The reasons for this were not hard to account for. The novelty of 
the theory wore off and people gradually got used to thinking of distributions 
as house-and-garden variety objects. It turned out that the function-theoretic 
underpinnings of the theory could be reduced to standard facts about 
Sobolev spaces, so one did not need to know about espaces tonnelles. In fact 
to learn enough of the theory to be able to work with distributions, albeit 
nonrigorously, one could get by with a few elementary facts about the 
Fourier transform. This meant that distributions could be made a regular part 
of the graduate curriculum. Finally, two extremely important mathematical 
developments, both occurring in the middle 50s, turned out to depend on the 
theory of distributions in an absolutely essential way. One of these was in the 
area of linear partial differential equations. In 1955, Ehrenpreis, Hörmander, 
and Malgrange proved independently that every constant coefficient partial 
differential equation admits a fundamental solution. The solution is produced 
by making sense of p(Q~l as a generalized function when/? is a polynomial 
function on R". There are several ways of doing this, but all require 
Schwartz's theory of distributions. 

The other development was in the area of group representations. In his 
thesis Bruhat was able to settle a number of fundamental questions concern
ing the irreducibility and unitarizability of induced representations of Lie 
groups by reducing them to technical questions about the kernels of inter
twining operators. The mathematical tool which made this reduction possible 
was one of the key theorems in distribution theory, the Schwartz kernel 
theorem. 
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The five volumes of Generalized functions were mostly written while these 
developments were taking place and, in fact, in no small way contributed to 
these developments. On rereading these volumes after a hiatus of several 
years, the reviewer was struck by the amount of innovative mathematics they 
contain: One can find many explicit formulas for the Fourier transforms of 
distributions in the engineering literature and more such in Schwartz and in 
Marcel Riesz's Acta paper, but the list of such results in volume one is 
certainly the most extensive such list ever compiled. (Among other things, this 
list provides explicit formulas for the fundamental solutions of many interest
ing partial differential equations.) I mentioned above the many technical 
improvements in the theory of distributions that occurred during the fifties. A 
number of these can be found in volumes 2 and 4, e.g. the notion of "rigged 
Hubert spaces". The tie-ins between spectral theory and distribution theory, a 
topic which has been of major importance in recent years, really started with 
the notion of "generalized eigenfunctions" in volume 3. In volume 5 one finds 
the Bruhat theory which I commented on above and the complementary 
"Plancherel" theory worked out in complete detail for the first time for the 
groups 5L(2, C) and SL(2, R). One also sees spelled out the role of integral 
geometry in this theory, a topic which I will have more to say about below. I 
do not want to attempt here an item-by-item inventory of the contents of 
these volumes; but I hope the examples above will suffice to convey some 
sense of the amount of original material they contain. 

In this review I would like to comment mainly on the material in volumes 1 
and 5. What impresses one about these volumes is their remarkable cohesive-
ness of tone, in spite of the diversity of the subjects that they deal with. I 
think this is attributable to the fact that Gelfand and his co-authors are 
committed to thinking about distributions in a rather novel way, namely not 
just as mathematical objects to be studied "in vitro" but as objects to be 
studied "in vivo", i.e. objects in the sense of category theory subject to the 
dynamics of functional operations. To explain what I mean by this, let me 
make a few trivial remarks about the functorial properties of distributions. 
C°° functions per se are "contravariant" objects. If X and Y are manifolds 
and/: X -* Y a smooth, proper map then C0°° functions on Y "pull back" via 
ƒ to C0°° functions on X. Generalized densities, being the dual objects to C™ 
functions have the opposite variance; they "push forward". Moreover, in 
certain instances this "push forward" operation carries the subspace of C0°° 
densities into itself. This happens for example if ƒ is a proper submersion. In 
this case, since generalized functions are the dual objects to C0°° densities, one 
gets a corresponding "pull-back" operation on generalized functions. To 
summarize, let/: X -* Y be a smooth proper mapping. Then 

(A) generalized densities "push forward" under ƒ and 
(B) generalized functions "pull back" under ƒ if ƒ is a submersion. 

It is easy to see that many of the basic operations on functions and 
distributions are amalgams of these two basic operations. To take a simple 
example consider the ordinary product, qnp, of functions <p and \p on X. This 
product is the "pull-back" via the diagonal map X-+X X X of the function 
<p X $ on X X X. To take another example, let K: C°°X -* C°°y and L: 
C°°Y-+ C°°Z be integral operators with kernels q>(x, y) and \p(y, z). Then the 
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kernel of the operator LK is the pull-back of q> X ipvi&X X Y X Z-*X X 
Y X Y X Z followed by the push-forward vizX X Y X Z-+X X Z. 

One of the idées clefs of volumes 1 and 5 is that most of the generalized 
functions that come up in concrete problems are obtainable by starting with a 
small supply of simple distributions on the real line, e.g. JC+, 0(x)> 8(JC), 
(x + 0/)A etc. and applying to them sequences of functorial operations. This 
idea is not new with Gelfand et al.; it was certainly familiar to Hadamard and 
Riesz; however, what is remarkable about Generalized functions is the per
tinacity with which this idea is developed, the number of examples elicited in 
illustration of it. Another idee clef is that the central problem of distribution 
theory is to legitimatize the operations (A) and (B) when ƒ happens not to be 
proper or happens not to be a submersion. For instance consider the problem 
of "pulling back" the distributions x+, 8(x), etc. on the real line with respect 
to the map/?; Rn -»R. Ifp is a polynomial and/? > 0, to make sense of/?"1 

as a distribution (the problem of Ehrenpreis-Hörmander-Malgrange men
tioned earlier) amounts to defining the pull-back of x\ for A * - 1 . If 
Re X > 0, x\ is a continuous function; so the usual pull-back is well-defined. 
One way to make sense of the pull-back of JC+ for X = -1 is by analytically 
continuing X from Re X > 0 to X = - 1 . In volume 1, it is shown that this is 
legitimate for large classes of/?'s. 

The problems in integral geometry discussed in Chapter 5 are also prob
lems of this nature. The most general sorts of integral transforms are trans
forms of the form, gj*, where f: Z-*X and g: Z -* Y are submersions. 
Obtaining an inversion formula for such a transform involves determining the 
fate of the delta function, SXo, for arbitrary x0B X under successive applica
tions of ƒ*, g+9 g* and f+. (This of course involves legitimatizing the applica
tion of those operations on distributions.) As Gelfand et al. show in volume 5 
this problem, which seems to involve four functorial operations can very 
often be reduced to a problem involving just one functorial operation. For 
instance let/?: Rn -»R be a polynomial function with an isolated singularity 
at the origin, and consider the following problem in integral geometry: 
determine the value at 0 of an arbitrary smooth, compactly supported 
function q> from the integrals of <p over hypersurfaces/? = c, c > 0. It is clear 
that these integrals determine </?+, <p> for all X. Under some mild assump
tions on the nature of the singularity of/? at 0, the distribution/?* is known to 
have residues for certain rational values of X which are either fi-functions or 
derivatives of ^-functions; so in these cases we can determine <p(0) from the 
integral data. An example for which this happens is when n = 2m and 
P " P(x>y) == x\yi + ' ' • +xnyn- Applying the argument above to this ex
ample one gets a very elegant proof of the classical Radon inversion formula. 

As an explicit illustration of these ideas let me describe the derivation given 
in volume 5 of the Plancherel theory for SL(2, C). Let G = SL(2, Q and let 

be the maximal unipotent subgroup of G. By a horocycle in G one means any 
subset of G of the form aNb. The space of all horocycles, which we will 
denote by G#; is a three dimensional complex manifold on which G X G 
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acts in a transitive fashion. Moreover, a typical left G-orbit in G # is of the 
form G/N. It is not hard, therefore, to obtain a "Plancherel theory" for 
L2(G#) (i.e. decompose L2(G#) into a direct integral of subspaces invariant 
under the left G-action) by means of the theory of the principal series: the 
Plancherel formula for L2(G/N). The idea is to relate the Plancherel theorem 
on G # to the Plancherel theorem on G by means of the obvious intertwining 
operator "integration over horocycles". Thus we have more or less reduced 
our problem to the following problem in integral geometry: determine a 
function on G from its integrals over horocycles. This in turn can be reduced 
to an even more elementary problem. The group SL(2, C) is the submanifold 
of C4 defined by the quadratic equation 

Q(z) = zxzz - z2z4 - 1 = 0 . 

It is easy to see that the horocycles are precisely the complex lines in C4 

which lie on this hypersurface. Given a function <p on the hypersurface. 
Q = 0, we can associate with it the distribution çQ*80, S0 being the delta 
function at the origin on the complex line. By the (complex) Radon inversion 
formula, whose derivative we sketched above, <pQ*80 is determinable by its 
integrals over the hyperplanes, H, in C4. Therefore <p is determined by its 
integrals over these hyperplanes intersected with Q = 0. However, it is easy to 
see that the intersection of H with Q = 0 is ruled by lines; so these integrals 
are in turn determined by the integrals over horocycles. Q.E.D. 

To reiterate, I feel the idées clefs in volumes 1 and 5 are the observations 
that: 

I. Most of the interesting generalized functions in analysis are obtained 
from simple distributions on the real line like x\ and 8(x) by means of the 
functorial operations "pull-back" and "push-forward". 

II. The basic problem in the theory of generalized functions is to legitima
tize these functorial operations for maps which fail to satisfy conditions (A) 
and (B). 

It is only in recent years that the significance of these two ideas has come 
to be duly appreciated, and I would like to conclude this review by describing 
some of the recent history of distribution theory in order to show just how 
influential these ideas have been. To begin with, Bernstein showed in 1973 
that for polynomial mappings between Euclidean spaces the "pull-back" and 
"push-forward" operations could always be legitimatized for distributions 
generated by such operations from the elementary distributions on the real 
line. The proof of this fact involved a remarkable observation: namely, 
distributions of this sort always satisfy large numbers of differential equations 
with polynomial coefficients (so-called "holonomic systems"). These equa
tions not only enable one to define "pull-back" and push-forward" operations 
by the kinds of analytic continuation arguments described above but also 
enable one to establish some surprising analytic properties for these distribu
tions: real analyticity off semialgebraic sets, existence of analytic continua
tions to the complex domain, etc. 

Bernstein's results apply to polynomial mappings between Euclidean 
spaces. Kawai, Kashiwara, Sato and Bjork showed that much of the Bernstein 
theory could be generalized to real analytic mappings between real analytic 
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manifolds. Another type of generalization, partly due to Kawai, Kashiwara, 
Sato and partly due to Hörmander, involves the notion of the "wave front 
set" of a distribution as a kind of substitute for the holonomic systems 
mentioned above. For instance, Hörmander shows that if ƒ : X-> Y is a 
smooth map and <p is a generalized function on Y then f*q> can be defined in 
a legitimate way if ƒ is transversal to the wave front set of <p. More generally 
he shows that both the pull-back and push-forward operations behave well 
with respect to maps which are well-situated (transversal) with respect to the 
wave-front sets of the distributions to which these operations are applied. 
Moreover, the "Fourier integral distributions" which have come to play such 
a central role in the theory of hyperboUc differential equations lately, turn out 
to be exactly those distributions which can be generated from the distributions 
(x + Oi)* on the real line by pull-back and push-forward operations satisfying 
these transversality conditions. 

There are a number of topics in volumes 1 and 5 of Generalized Junctions 
which seem capable of further exploitation. For instance in spite of the 
impetus given to the field of integral geometry by the work of Gelfand-
Graev-Vikenkin on the Plancherel formula for SL(2, Q we still know em
barrassingly little about these questions. In volume 5, Gelfand et al give 
necessary and sufficient conditions for a line complex in CP3 to be "admissi
ble", i.e. to have the property that the integrals of a function on CP3 over the 
lines of the complex determine it unequivically. Later Gelfand and Graev 
extended this result to CPn; however we still do not know much about the 
admissibility of complexes of planes, three-folds etc. 

Another topic which deserves further investigation is the question of what 
class of distributions one gets if, starting with the elementary distributions, 
zMf ", on the complex line, one tries to generate new distributions by succes
sive "pull-backs" and "push-forwards". (For the beginnings of a theory, see 
appendix B of volume 1.) 
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Schwartz spaces, nuclear spaces and tensor products; by Yau-Chuen Wong, 
Lecture Notes in Math., vol 726, Springer-Verlag, Berlin-Heidelberg-New 
York, 1979, vin + 418 pp., $19.50. 

During a conversation in 1966, G. Köthe said to me, "The best book about 
the general theory of nuclear spaces and tensor products in existence today is 
the book of A. Pietsch [16]". Perhaps the kindest thing to be said about the 
present book is that Köthe's statement is still true. In fact, although he tries to 
hide it with new names such as "prenuclear norm", most of Wong's book 
could have been written at the time of that conversation. He doesn't write 
very much about what has happened in the ensuing 14 years. 

It is common knowledge that the origin of the theory of nuclear spaces 
(and tensor products, too-there is little to be said about Schwartz Spaces 
these days) hes in the thesis of A. Grothendieck [10]. I'll indicate some 


