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havior, e.g. regularity and asymptotic behavior. He also has a chapter on 
nonlinear equations, with emphasis both on the successive approximation 
theory associated with (7) and on monotone operator methods. (For recent 
results on equations such as (8), (9) see for instance Kato [1], [2].) The last 
chapter is concerned with optimal control theory. 

Tanabe's book is a good one. A lot of good material is gathered together 
and unified nicely. Notable features include a nice treatment of fractional 
powers of operators, a unified exposition of J.-L. Lions' variational approach 
with evolution operator theory, a sketch of higher order elliptic boundary 
problems in If spaces, 1 <p < oo, some nice applications of (nonlinear) 
monotone operator theory in reflexive Banach spaces, and more. 

Unfortunately, the book has some flaws. In many places the English is 
awkward and there are a number of errors, linguistic, typographical, and 
mathematical as well.1 When the book again goes to press, either for a second 
edition or a new printing, the book will undoubtedly benefit from having the 
services of a conscientious and competent translation editor. 

I wish to thank Professor James G. Hooten of L.S.U. for his helpful 
comments. 
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1I'll be happy to supply interested readers with a list of the errors. 
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Generalized inverses of linear transformations, by S. L. Campbell and C. D. 
Meyer, Jr., Surveys and Reference Works in Mathematics, No. 4, Pitman, 
London, San Francisco and Melbourne, 1979, xi + 272 pp., $42.00. 

Although Generalized Inverses (GIs) date back to about 1900, and have 
been developed more or less continuously since then, with explosive growth 
since the 1950s (the annotated bibliography of Nashed and Rail [2, pp. 
771-1041] lists 1775 related publications through 1975), the subject has long 
been a somewhat murky backwater. GI .theory is notorious for having 
spawned disproportionately many inferior published articles (presumably 
hundreds more having been deservedly ambushed on their way to print), and, 
apart from a wide acceptance by statisticians, there has as yet been only 
limited interaction with other parts of mathematics. The subject has not 
penetrated the undergraduate curriculum, and probably most working 
mathematicians regard GIs as at best a mystery-or even a kind of mysticism. 

Nevertheless, certain basic items of GI lore should, in the reviewer's 
opinion, become part of every mathematician's tool kit; and, among the 
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morass of published work, there are a few articles which contain the begin­
nings of a substantial, elegant, and useful-though as yet somewhat discon-
ected-theory. Before we examine Campbell and Meyer's book (hereafter 
referred to as [CM]), it is appropriate to provide a brief outline of what GIs 
are, and examples of what they can do. In any multiplicative system S with a 
unity element 1, given any elements a, x e S, then x is called an inverse of a 
if ax = xa = 1. In nonassociative systems an element a may have several 
different inverses x,y,..., but, for associative S, i.e. for semigroups (or more 
specifically, given the presence of 1, monoids), the equation xa*y = x* ay 
immediately yields the uniqueness of inverses, so that, when x exists, we may 
write x = a~l as a single-valued function. One specific S which is crucial for 
most GI theory and applications is the multiplicative semigroup S = Mn(C) 
of all n X n complex matrices (in which concrete context we shall write A, 
X,..., rather than a9 JC, . . . ). Here we have the map A -* A~~l defined on 
the "large" subset of nonsingular A, and GI theory originated (after a few 
historical detours) in the desire to extend this map to obtain a ("natural", 
well-defined) map y : Mn(C) -» Mn(C)> sayA-*A y. 

One way to do this uses the long-known fact that for every A E Mn(C) 
there exists at least one X E Mn(C) such that AXA = A (i.e., in the terminol­
ogy introduced by von Neumann in 1936, every A E Mn(C) is regular in 
Af„(C), and Mn(C) is also itself called regular). For nonsingular A we are 
obliged to take Ay = A~l, but X is nonunique for singular A, so, even if we 
decide to impose the requirement that AAyA = A for every A, there are 
infinitely many such "regular extensions" y; and similar considerations apply 
to any regular semigroup S (with or without unity) in place of Mn(C). 

While, for aesthetic and other reasons, it is desirable to have some "stan­
dard" y available, in fact any regular y yields quick dividends. For example, 
given any n X n matrices (or regular semigroup elements) A, B, it is easy to 
see that the equation A Y = B has a solution Y if and only if AA yB = B> 
which leads at once to Penrose's 1955 observation (modestly but erroneously 
attributed by him to Cecioni) that, given n X n matrices (or regular ring 
elements) A, B9 C, D, then the equations A Y = B9 YC = D have a common 
solution Y if (and, of course, only if) each individual equation has a solution 
and AD « BC (consider Y= AyB + DCy - AyADCy). Moreover, if we 
regard n X n matrices as acting on the space V of complex column /i-vectors 
h, y, z , . . . , then, similarly, Ay = b has a solution y E V iff AA yb = b, in 
which case the general solution is y = Ayb + (In — AyA)z for arbitrary 
z E V, thus avoiding the technicalities of the traditional treatment of linear 
systems via row transformation and rank. Our restriction here to square 
matrices is only for ease of exposition-all the ideas generalize trivially to the 
case of rectangular matrices (and to categories, which provide the correspond­
ing generalization of monoids). There are also already many other significant 
applications of matrix GIs in diverse special contexts, such as control theory, 
cryptography, curve fitting, difference and differential equations, electrical 
network theory, game theory, Markov chains, and programming. 

For regular semigroups in general there is (as yet) no known way of 
canonically singling out a specific regular map y: S-* S. However, if S has a 
given involution *, i.e. a map *: S-+ S such that (a*)* = a and (ab)* = 6*a* 
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for all a, b E S, then a brief computation shows that, for given Ö 6 S , there 
can be at most one x 6 S satisfying 

axa = a, xax = JC, (ax)* — ax9 (xa)* = xa. 

More surprisingly, subject only to one further condition on the involution, 
which condition is satisfied by the involution (ars)* = (asr) on S = Mrt(Q, it 
is not hard to show that, for regular S, every a G S has a corresponding x. In 
other words, the four equations displayed just above jointly determine a 
regular GI map y: a -+ x, uniquely defined over the whole of S; this y is the 
celebrated Moore-Penrose (MP) map, denoted a -» x = aft. More generally, 
any GI map determined uniquely over all of S (at least for S — Mn(C)) will 
be called a Unique Generalized Inverse (UGI). 

For certain practical applications, such as solving linear systems Ay = b, 
there may be no advantage in using A* rather than any other solution X of 
AXA = A ; indeed, since some such X can be found with substantially less 
effort than would be needed to compute A*9 it may be more efficient to use 
such a "random" X in preference to A*. However, the MP inverse has many 
special properties in its favor: for example, it is reflexive (i.e. 04*)* = A), 
commutes with * and with unitary similarities, and, if the system Ay = b is 
inconsistent, then>> = A*b is, in the sense of least squares, the best approxi­
mate solution of minimum norm. On the other hand, the MP inverse does 
have certain shortcomings: e.g. the map f does not commute with some 
nonunitary similarities, while in general A*A ¥*AA*9 (ABf ¥* B*AJ, and even 
{A2f ^ (A*)2. Indeed, no single GI or UGI can be expected to satisfy every 
familiar or desirable property of the ordinary inverse map-there is no 
"all-powerful" GI. Instead, the best one can hope for is to have available a 
battery of several UGI maps y,, y2,..., each with its own characteristic 
strengths (and weaknesses): for example, Greville's GI is reflexive, while that 
of the reviewer commutes with * and all similarities and is commuting (i.e. 
A A y = AyA), but not regular or reflexive. For any specific application, one 
employs whichever available UGI (or GI) seems most appropriate to the 
problem at hand. 

Most work on GIs can be roughly classified under the headings (1) 
invention of UGI maps, (2) exploration of properties of such UGIs, (3) 
"invention" and properties of nonunique GIs, (4) computational aspects, and 
(5) applications to other branches of mathematics (i.e. to problems which, as 
they arise, do not explicitly involve GIs). While, under (3), it is trivial to 
produce arbitrarily many "definitions" of nonunique GIs, and, under (1), 
even easy enough to produce new UGIs, research under heading (1) has 
already passed its most active stage: the easily-produced UGI maps just 
referred to are artificial and of little interest or utility, and, even for matrices, 
besides the few UGI maps which have already established themselves, there 
are probably very few (if any) other viable UGI maps left to be discovered. 

Thus current research falls largely under ( 2 ) , . . . , (5), and any text or 
monograph may usefully be considered in terms of its coverage of these 
respective headings. While, particularly under (2) and (3), already so much is 
known that completeness is impracticable, [CM] offers plenty of meat under 
each heading, and the authors have made an excellent selection of interesting 
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and useful material, providing many new insights from their own wide 
experience in the field; understandably, they tend to emphasize those topics 
to which they have themselves made contributions, but this has not led to any 
serious imbalance. While GI theory can profitably be carried out in more 
general contexts, certainly most applications to date have used ordinary 
finite-dimensional complex linear transformations (or, equivalently, complex 
matrices), so probably the authors are wise in restricting their attention to this 
concrete context, which is familiar to an extensive audience, provides a ready 
supply of numerical examples, and also allows the discussion and use of 
certain valuable concepts and facts which have no analogues in more abstract 
contexts (for example, the "spectral" property of y that every eigenvector of A 
is also an eigenvector of AY, or the fact that the bilateral matrix equation 
A YC = B is equivalent to a system of scalar linear equations for the entries 
of Y). 

The authors provide, in only 272 pages, a thorough treatment of the theory 
and applications of matrix GIs, mostly accessible to any beginning graduate 
student or bright undergraduate. There is much stress on motivation and 
heuristics (see e.g. pp. 19-24), so that the beginner should incidentally absorb 
some notion of how to create new mathematics himself. Efficient computa­
tional algorithms and worked numerical examples (and counterexamples) are 
liberally provided, and the authors rarely shirk their duties-there is very little 
hand-waving, and questions raised are pursued relentlessly, the arguments 
and computations usually being presented in detail in a concrete, down-to-
earth (and generally quite readable) informal style. There are numerous 
well-conceived exercises for the reader. 

But some criticisms must be mentioned. Although the authors include 
several elegant results (some new even to the specialist), this is a utilitarian 
rather than a stylish book, both in its prose and in its computations. The 
policy of conscientiously supplying every detail often produces an impression 
of overkill, which, combined with the inherent grittiness of some of the 
subject matter (e.g. Chapter 3), may discourage some readers. Further aggra­
vations are careless uses of a single symbol for two meanings (e.g. R in line 3 
of p. 35 and line 13 of p. 69, k in lines 3 and 5 of p. 125, or A in lines 3 and 4 
of p. 190), other capricious and disconcerting inconsistencies of notation (e.g. 
(c i>)> (z> B)> anc* (* z>) o n PP- 53, 58, and 59), and consistently ugly typogra­
phy: Unes are not justified at the right-hand margin and are so close together 
that superfixes sometimes jostle suffixes from the line above, while insuffi­
cient attention has been given to proper display of formulae for maximum 
intelligibility; and misprints are rather frequent. 

It is easy to snipe at any author's choice of material, or at his treatment of 
it. I content myself with just two such carpings. First, the version of the 
General Polar Form A = VB = CW offered on p. 73 is much less satisfying 
than Penrose's 1955 version (in which the imposition of further natural 
conditions determines B, C, V, W uniquely, with K = W). Second, the 
authors conspicuously (pp. 1, 6, 26, 72, 73, 76) shirk establishing the Singular 
Value Decomposition (and the closely related canonical Penrose Decomposi­
tion), which is of fundamental importance in matrix MP theory, and (al­
though known for over a century) is rarely accorded even passing mention in 
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linear algebra texts; it would have been well worth taking space to develop 
this theme at some length. 

To summarize, after its renaissance in the 1950s, GI theory passed through 
its infancy in the 1960s and its adolescence in the 1970s. For the 1980s, it is 
reasonable to expect a coming-of-age in which abstract algebra, operator 
theory, and mathematical logic may begin to play a larger role on the 
theoretical side, while presumably also several significant and interesting new 
applications remain to be found as GIs become better understood and more 
widely known. To this end, [CM] deserves a place, together with [1], [2], and 
[3], on the shelf of every GI specialist and potential GI user (since each 
source offers much material not treated in the other three), and is also to be 
recommended to the interested general reader or student. While only a few 
readers will wish to follow every topic to its last details, this book has enough 
solid content to make it a valuable reference, and even the beginner should 
have little difficulty in selecting those sections most deserving of intensive 
study. 
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Computers and intractability: A guide to the theory of NP-completeness, by 
Michael R. Garey and David S. Johnson, W. H. Freeman and Company, 
San Francisco, 1979, xii + 338 pp., $10.00 (paper). 

There is a class of algorithmic problems that is currently receiving a great 
deal of attention from computer scientists and applied mathematicians: the 
class of "ArP-complete" problems. Examples of problems in this class are the 
satisfiability problem for conjunctive normal form statements in the proposi-
tional calculus, the three-colorability problem in graph theory, the travelling 
salesman problem, the three-dimensional matching problem (i.e., the generali­
zation of the classical marriage problem in the setting of three sexes and 
three-way marriages), the bin packing problem, and the integer programming 
problem.1 For each such problem an algorithm is known for solving all 
instances of the problem; the basis for the monograph reviewed here is the 
more refined question of whether the problem is tractable, i.e., whether an 
algorithm exists that solves all instances of the problem and that has running 
time bounded by a polynomial in the size of the input. (This interpretation of 
the notion of tractability is due to Cobham [1] and to Edmunds [2].) It is not 

!At this time it is not known whether the linear programming problem is JVP-complete, 
irrespective of the statements in The New York Times, November 7, 1979, p. 1. 


