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Fermafs last theorem, a genetic introduction to algebraic number theory, by 
Harold M. Edwards, Graduate Texts in Math. Springer-Verlag, Berlin and 
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13 Lectures on Fermafs last theorem, by Paulo Ribenboim, Springer-Verlag, 
Berlin and New York, 1979, xvi + 302 pp. 

For more than three centuries many good and many not so good mathema
ticians have attempted to prove Fermafs last theorem. While the collected 
efforts of these mathematicians have not yet led to a solution of this problem, 
much is now known about the problem and more importantly much new 
mathematics has been discovered in the process of working on the conjecture. 

Fermafs last theorem can be simply stated as: Show that xn + yn = zn 

has no integral solutions with n > 2 and xyz =£ 0. It clearly sufficies to prove 
this result f or n = 4 and n = p, din odd prime. When n — p, the theorem has 
been traditionally separated into two parts called case 1 and case 2. The first 
case is to show the equation has no solution with xyz ^ 0 (mod/?) and the 
second is to show no solution exists with xyz = 0 (mod/?). 
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The history of the problem can roughly be divided into three eras which I 
shall call the pre-Kummer, the Kummer and the post-Kummer eras. The 
pre-Kummer developments were largely limited to proving special cases of 
the theorem. Various proofs were given of the theorem for the exponents 3, 4, 
5 and 7. A very different and beautiful result of the era is the Theorem of 
Sophie Germain (1823) which says: If p is an odd prime such that q =• 2/? + 1 
is also prime then the first case of Fermat's last theorem holds for the 
exponent/?. Her result was soon generalized by Legendre to the cases where 
q = 4/? + 1, 8/? + 1, lOp + 1, 14/? + 1 and I6p + 1 is a prime. Using these 
results Germain and Legendre established the first case of Fermat's last 
theorem for all primes/? less than 100. 

As the Kummer era approached, mathematicians began using complex 
roots of unity to factor the left-hand side of the equation xp + yp = zp. The 
question soon arose as to whether or not the unique factorization theorem 
held in the so-called rings of cyclotomic integers. Kummer soon realized that 
the answer to this question was no in general, and developed a theory of ideal 
numbers which restored a type of unique factorization to the cyclotomic 
rings. This theory enabled Kummer to prove Fermat's last theorem for the so 
called regular primes. Since Kummer's theory of ideal numbers has been 
superseded by Dedekind's theory of ideals, Kummer's work is a bit of a 
mystery to most of us. More than a decade ago, when I was a graduate 
student, A. Frohlich visited our university and I asked him about Kummer's 
work. I remember him replying, "I don't know too much about this historical 
stuff, but using what we know today it is not too difficult to see what 
Kummer had in mind". I never fully understood this statement until I began 
reading Edward's book. I shall attempt to explain Frohlich's statement below. 

Kummer's theory only applies to subfields of cyclotomic fields; that is, to 
absolutely abelian fields. To simplify matters further, we shall only consider 
the case where K = Q($) is the Ath cyclotomic field with X a prime. For a 
prime/? ¥= X let ƒ be the order of/? modulo X and g = (X — 1)//. There exists 
a subfield L of K of degree g over Q such that /? splits completely in L and 
each prime factor of p in L remains prime in K. (L is the decomposition field 
of any prime ideal divisor of /? in K.) Thus if P is any prime ideal divisor of p 
in L and a is an integer of L then there exists a unique rational integer a 
reduced modulo/? such that 

a = a (mod P). 

The essence of Kummer's definition of ideal prime numbers is to give a rule 
for a cyclotomic integer to be divisible by a power of the prime ideal Pn 

without explicitly defining P. We shall use the term ideal divisor instead of 
ideal number and use P to denote the ideal divisor associated with the prime 
ideal P. Kummer showed that the g cyclotomic periods rjj, . . . , i\g of length ƒ 
form an integral basis for L over Q and that 

g(x) = irr(7]!, Q) = (x - TJ,) • • • (x - i\g) 

splits completely modulo/?, i.e. 

g(x) = (x - ax) • • • {x - ag) (mod/?) 
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for some integers al9 . . . , ag reduced modulo/?. Hence by proper numbering 
we have 

Tj,. = at (mod P) for i - 1, . . . , g. 

Since g(x) has no multiple roots modulo /?, the numbers al9. . . , ag are all 
distinct modulo/?. Let 

Hv) = n n (IJ, - a} 
and a E A' be a cyclotomic integer. For any positive integer «, define 

a = 0 (mod P") 

to mean 

x^n(ri)a = 0(mod/?w). 

Moreover, if -ql is assigned to at for 1 < i < g then there exists exactly one 
assignment of the remaining T̂ .'S to the remaining ajs which gives an ideal 
prime divisor of/?. That is,/? determines exactly g distinct ideal prime divisors 
of K. The integer (1 — f ) is a prime number of K which divides X to the 
X — 1 power and is the only prime divisor of X. 

The prime divisors of K are exactly the prime divisors of the rational 
primes and every divisor is by definition the product of prime divisors. A 
cyclotomic integer is said to be divisible by the product of two relatively 
prime divisors if and only if it is divisible by each of the two factors. 

A divisor A of K is said to be principal if there exists an integer y of K such 
that for every integer a of K, A divides a if and only if •£ divides a. Two 
divisors A and i? are said to be equivalent if for any divisor C, AC is principal 
exactly when BC is principal. 

Kummer proved the following fundamental results: (1) any algebraic 
integer of an abelian field K can be uniquely expressed as the product of 
prime divisors and (2) the divisors fall into finitely many equivalence classes. 
The number of such equivalence classes for the field K = 0 ( 0 wiU De 

denoted by h(K). A prime X is called regular if X does not divide h(X). In 
addition to using his theory of ideal prime numbers to prove Fermat's last 
theorem for regular primes, he characterized the regular primes as those 
primes X which do not divide the numerators of the Bernoulli numbers B29 

B4, . . . , BX_y 
Post-Kummer results about the Fermât problem can roughly be divided 

into three types: (1) congruence conditions, (2) class number conditions and 
(3) computational methods. In order to illustrate the nature of these results, 
we will mention a few examples of each type. 

Wieferich made a significant contribution in 1909 when he proved: If the 
first case of Fermat's last theorem fails for the exponent/? then/? must satisfy 
the congruence 

2p~x = l(mod/?2). 

The only primes known (i.e. less than 3.109) to satisfy this congruence are 
p = 1093 and/? = 3511. In 1910 Mirimanoff proved that 2 could be replaced 
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with 3 in the above congruence and subsequently similar conditions have 
been proved for all primes up to 43, although the correctness of the proofs for 
the three highest primes is in doubt. Despite the fact that these conditions 
seem very restrictive, no one has yet been able to prove the first case of 
Fermat's last theorem for infinitely many prime exponents. 

What remained after Kummer was to prove Fermat's last theorem for 
irregular primes. It seems natural to seek further sufficient conditions on the 
class number h(p) of the /?th cyclotomic field for Fermat's last theorem to be 
true. We can write h(p) = h = h+h* where h+ is the class number of 
maximal real subfield of the /?th cyclotomic field and h* is an integer. 
Kummer proved in 1850 that if/? divides h then/? divides h*. Since Kummer's 
time many results of the following type have been proved: If the first case of 
Fermat's last theorem fails for the exponent/? then/?0 divides h*. This was 
done by Hecke for a = 2, Furtwângler for a = 4, Vandiver f or a = 8 and 
Morishima and Lehmer for a = 12. However, a much better result was 
proved by Eichler in 1965. Namely, if the first case fails for the exponent/? 
then/?1^1-1 divides h* and the class group of the/?th cyclotomic field must 
have/?-rank greater than Vp — 2. 

During the past three decades several articles have been written with the 
title, "Fermat's last theorem holds for all prime exponents less than B", where 
B is some constant. The largest such bound B = 125,000 was obtained by 
Wagstaff in 1977. In order to prove such results, practical computational 
methods were needed first to decide whether a given prime is regular or 
irregular and then for proving Fermat's last theorem for irregular primes. A 
convenient solution to the first problem was given by Stafford and Vandiver 
[2] in 1930 and to the second by Lehmer, Lehmer and Vandiver [1] in 1954. 

While the two books being reviewed here both contain the words, 
"Fermat's last theorem", in their titles, the two authors strive to achieve quite 
different goals. Edwards' goal is to give a "genetic introduction to algebraic 
number theory", while Ribenboim's objective is to give a historical survey of 
the main lines of work on Fermat's last theorem. 

The genetic method is defined as "the explanation or evaluation of a thing 
or event in terms of its origin and development". While Edwards' book may 
in a puristic sense achieve its author's goals, I found the book to be somewhat 
of a disappointment. As I share Edwards' interest in the work of our 
mathematical ancestors and his enthusiasm for computations, I had high 
expectations for his book. My main criticism concerns the style of presenta
tions: Many of the explanations and proofs are very longwinded and 
cumbersome. Although the proofs generally contain a lot of detailed notation, 
equations and congruences are seldom displayed on separate lines. Reading 
this book is often like trying to find ones way through a rhododendron 
thicket. 

Edwards' discussion of Fermat's last theorem ends with the Kummer era. 
The book concludes with chapters on the Gauss theory of binary quadratic 
forms and on Dirichlet's class number formula for abelian fields. The author 
promises a second volume to cover developments of the post-Kummer era. 
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In sharp contrast to Edwards' verbose style, Ribenboim's presentation is 
clear, concise and elegant. The thirteen lectures cover the major events of all 
three eras with a heavy emphasis on the post-Kummer era. The book is a true 
work of art. The lectures are well organized and present the mathematics 
underlying seemingly isolated results in a very cohesive manner. In order to 
avoid too much technical detail, the proofs of the more difficult theorems are 
sometimes only sketched and other times omitted completely. An extensive 
bibliography is given at the end of each section so the reader can easily locate 
sources which cover material missing in the text. Ribenboim also promises a 
second volume which is intended to contain much of the technical develop
ment which was omitted in these thirteen lectures. His first book should 
stimulate interest in and promote a better understanding of the mathematics 
related to Fermat's last theorem. One can only have high expectations for 
Ribenboim's second book on this subject. 
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Can the dimension theory of vector spaces, algebraically closed fields, 
countable torsion Abelian groups (Ulm's Theorem) etc. be generalized to 
provide a means of characterizing the models of an arbitrary first order 
theory? If not, can the obstacle to such an extension be identified and the 
program carried through in its absence? A vector space or an algebraically 
closed field is determined by a single cardinal (the number of independent 
elements); a countable torsion Abelian group is determined by an infinite 
sequence of cardinals. Thus by a generalized dimension theory we mean a 
method of attaching to each model a sequence of cardinals which determine 
it up to isomorphism. The first test of such a generalized dimension theory is 
its ability to solve the spectrum problem: i.e., to count the number of models 
of a theory. In fact, Shelah's answer to these questions arose from the study 
of the following problem. For a first order theory T, let n(T, X) denote the 
number of non-isomorphic models of T with cardinality A. Determine the 


