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BOOK REVIEWS 

Inequalities: Theory of majorization and its applications, by Albert W. 
Marshall and Ingram Olkin, Mathematics in Science and Engineering, Vol. 
143, Academic Press, New York, 1979, xx + 569 pp., $49.50. 

Probability inequalities in multivariate distributions, by Y. L. Tong, Probabil
ity and Mathematical Statistics, A Series of Monographs and Textbooks, 
Academic Press, New York, 1980, xiii + 239 pp., $ 29.50. 

Both monographs make extensive use of a (quasi) partial ordering of Rn 

called majorization and the corresponding class of (Schur) increasing func
tions on Rn. In this connection, it is best to think of x = {xx, . . . , xn) E. Rn 

as representing the measure JU on the reals R of total mass n which is defined 
by fi(A) = SxGy4 1. Let v denote the analogous measure represented by the 
pointy Gi?". One says that x is majorized by>> and also that x < y or that>> 
is a dilation of x when 

(1) 2 /U) - ffdii < /ƒ * - 2 ƒ(>>,) 
1 - 1 J J 1 - 1 

holds for each convex function ƒ on R. It implies that /x and v have the same 
mass and the same centre of gravity. A necessary and sufficient condition is 
that 

k k 

(2) 2 X[t] < S y[i) for fc = 1, 2, . . . , «, 
i - i i - i 

insisting that the equality sign holds when k = n. Here, x[X] > • • • > x[n] are 
the xt arranged in decreasing order and, similarly, y[X] > • • • > y[n]. If (1) is 
only required for the increasing (decreasing) convex functions on R then one 
speaks of weak sub-majorization x <wy (or weak super-majorization x <w>>, 
respectively). The first is equivalent to (2). 

Let & be an open convex subset of Rn which is symmetric, that is, 
invariant under each permutation of the coordinates. A function </>: & -> R is 
said to be Schur increasing (or Schur convex) if it is nondecreasing relative to 
the partial ordering x < y of & ; similarly for Schur decreasing functions, also 
called Schur concave functions. A Schur increasing function is always sym
metric. An obvious example would be 

n 

(3) <j>(x) = «MX, . . . , xn) = 2 Ax,), 
1 - 1 

with ƒ: R-* R a convex function. More generally, every symmetric and 
convex (concave) function on & is Schur convex (Schur concave). A symmet
ric C ! function <j> on & is Schur increasing if and only if <J>(l)(.x) — <t>(j)(x) is 
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always of the same sign as xt — Xj (where <f>(fc) denotes the partial derivative 
relative to xk). After all, any dilation x < y is the composition of at most 
n — 1 (elementary) dilations u < t>, where u and v differ in at most two 
coordinates. If x <wy (x <w y) then <f)(x) < <j>(y) for every <t> which is Schur 
convex and, moreover, increasing (decreasing) in each coordinate. 

The importance of majorization (and related quasi partial orderings) 
largely derives from its many applications. The best treatment so far was the 
one given by Hardy, Littlewood and Pólya (1934). But now, and for many 
years hence, this distinction will probably be assigned to Marshall and Olkin's 
treatise. It is nearly exhaustive and very readable at the same time. Full 
proofs (sometimes several) are given of most results and there is an abun
dance of cross referencing. The book contains many new proofs and new 
results, a survey of some 450 papers and even a biography with photographs 
of a few of the early contributors: Muirhead (1860-1941), Lorenz (1876-
1959), Dalton (1887-1962), Schur (1875-1941), Hardy (1877-1947), Lit
tlewood (1885-1977) and Pólya (1887-). 

The greater part of the book is devoted to applications. Much of the 
required background is collected in Part V (pp. 443-519). It contains for 
example a useful discussion of the Loewner partial ordering A < B of 
matrices (meaning that B — A is positive semidefinite). The following are a 
few of the applications. 

(i) Schur (1923) proved that x < y when x is the vector of diagonal 
elements of an Hermitian matrix H, while y is the vector of eigenvalues of H. 
As was shown by Horn (1954), every pair x9y with x < y can be realized in 
this way. 

If H is strictly totally positive instead then u <w v where ut = log xt and 

(ii) Let x9 y be «-tuples of nonnegative integers such that 2 x, = 2 >>/ = iV 
andj*! > y2 > • • • > yn. Then x < y holds if and only if (1, 2, . . . , N} has 
a system of subsets El9 . . . 9 En with \Et\ = xt and with precisely^ elements 
belonging to at leastj of the sets Et (ij = 1, . . . , n). 

(iii) The area of a triangle is a Schur decreasing function of its sides. The 
radius of the circumcircle of a triangle is a Schur increasing function of its 
sides. 

(iv) Let Q — {1, 2, . . . , N} be a finite population of size TV and let n be a 
given sample size. In any sampling plan one may sample with or without 
replacement or even replace the /th selected item with a probability wt 

depending on i. More generally, a sampling plan P is defined to be a 
probability measure on the set Kn of all sequences k = (kx, . . . 9 kN) of 
nonnegative integers satisfying 2 ^ kj = n. Here kj is to be interpreted as the 
number of times that the member j e Q, occurs in the sample. It will be 
assumed that P is symmetric, that is, invariant under the permutations of 12. 

Drawing a sample also involves observing a vector yj of numerical char
acteristics attached to j G £2. A sampling plan Q is said to dominate a 
sampling plan P if, roughly speaking, the equivalent of a sample of type Q 
can be obtained by starting with an actual sample of type P and then 
applying a computer algorithm (involving randomization), the latter having 
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no knowledge beyond the sample of the actual characteristics yr This turns 
out to be true if EP<j> < EQ<j> for each Schur increasing function <j> on Kn. In 
that case, EPg(Y) < EQg(Y) when g(u) is a symmetric function on 
{y\> • • • ̂ NT with h(al9 a2) < (h(av a{) + h(a2, a2))/2. Here h(uv u^ de
notes g(ul9 . . . , un) with w3, . . . , un kept constant. 

This reviewer found the Chapters 11, 14, and 15 somewhat sketchy. The 
remarks on pp. 17, 417, 483 could have been worked out in more detail. 
Specifically, many results would have been more unified and better in focus if 
they were treated as special cases of a general theory involving increasing 
functions on an arbitrary partially ordered space and the asso
ciated dilations between measures, for instance, in the spirit of the paper by 
Kamae, Krengel and O'Brien (1977). 

I would prefer to start with a fixed cone K of real-valued measurable 
functions on a measurable space S. Let 9H denote the collection of (nonnega-
tive) measures /x on S such that each f G K is ju-integrable. For it, v G 9H, 
define 

H < v if ffdii < f f dp for a l l / G K. 

We will say that v is a AT-dilation of JU. 
Important examples are (i) K is the class of all bounded and measurable 

increasing functions on a (quasi) partially ordered measurable space S9 (ii) S 
is a subset of a locally convex topological vector space and AT is a suitable 
cone of continuous convex functions on S9 (iii) S is a compact metrizable 
space and K is a convex cone of continuous functions on S, containing the 
constant functions and such that fl9 f2 G K imply max(fl9f2) G K. 

In case (iii), in order that a measure v be a AT-dilation of a measure [i it is 
necessary and sufficient that v can be written as 

(4) v(B) = f Q(x, B)p(dx), 

with Q(x,) a probability measure on S which dilates the 1-point measure ex. 
That is, f(x) < ƒ f(y)Q(x, dy) for all x G S and all ƒ G AT. In its present 
generality, the decomposition (4) is due to Cartier; see Meyer (1966) for 
references and proofs. Instead of S itself being compact, it would naturally be 
sufficient that /x and v have compact carriers. 

As an example, take S = Rk and let K consist of all convex functions on 
Rk of at most linear growth. Then ex < Q(x>) if and only if the Q(x,) mass 
distribution has x G Rk as its center of gravity. Thus, (4) simply says that v 
can be obtained from /x by spreading out the different masses \i(dx) over Rk 

in such a way that in each individual spreading the original center of gravity 
x is maintained. This picture best explains the term "dilation" already used in 
the very special case that \i and v are finite integer-valued measures on JR. 

More generally, let ii and v be finite discrete measures on Rk with supports 
{*!, ...,xm] and {yv . . . ,>>„}, respectively. Then (4) becomes 2/AÖ/y = qj 
and Sy Qijyj = xi9 where/?,. = /x({*,-}), q} = v{{yj}) and Qtj = Q(xi9 {^}). 

In the special case where m = n and/?, = qj, = 1, the matrix (Qy) would be 
doubly stochastic and it follows from Birkhoff's theorem that (xl9 . . . , xn) is 
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in the convex hull of the n\ permutations (y 9 . . . ,ym)> This type of dilation 
coincides with the one on p. 430. 

No doubt, Marshall and Olkin's work will be a standard reference for 
many years to come. It would also serve well as a graduate level textbook 
even though there are no exercises. We highly recommend it. 

The monograph Probability inequalities in multivariate distributions by Y. L. 
Tong has some 100 exercises spread over 8 chapters. It is oriented to the 
inequalities useful in multivariate statistics: confidence limits, hypothesis 
testing, ranking and selection, reliability and life testing. These applications 
are treated in Chapter 8. A central role is played by the multivariate normal 
distribution and related multivariate distributions. 

This area opened up only recently, and much remains to be done. The area 
is important also because exact calculations for multivariate distributions are 
notoriously difficult. The book is well written and can be read by any second 
year graduate student, still leading him to several frontiers of our present very 
limited knowledge. 

Chapter 2 discusses Slepian's inequality and its generalizations. Chapter 3 
presents analogous results for the multivariate ^-distribution, chi-square and 
F-distributions. Chapter 4 treats Anderson's inequality for symmetric uni-
modal distributions and its generalizations. Chapter 5 covers a large number 
of inequalities closely related to certain measures of dependence such as 
association. Chapter 6 has a considerable overlap with Marshall and Olkin's 
monograph and treats inequalities derived from certain partial orderings of 
Rn, especially majorization and the usual product partial ordering. Chapter 7 
treats a number of multivariate moment problems. A detailed discussion of a 
large number of statistical applications is given in the final Chapter 8. 

I will discuss only a few aspects. In the sequel, ƒ will denote a probability 
density on Rn. It is said to be unimodal (in the sense of Anderson) if the set 
Au = {x: f(x) > u} is convex for each u > 0. The following result due to 
Anderson (1955) had a profound influence. Let fl9f2 be unimodal densities, 
each symmetric about the origin. Then the convolution <t> = fx * f2 has the 
property that ${uy) is a decreasing function of \u\ (u G R). 

An important example of a unimodal density is that where ƒ has the form 

(5) ƒ(*) - g(x'-2-lx), 

with g a decreasing (-nonincreasing) function and 2 a positive definite n X n 
matrix. It was shown by Das Gupta, Eaton, Olkin, Perlman, Savage and 
Sobel (1972) that, for all a G Rn, 

(6) Px[Xt < at for all i] > P1[Xi < at for all i] 

(i = 1, . . . , n) when Px is governed by (5) with 2 = 2* and P2 is governed by 
(5) with the same function g, 2 = 2 2 and 2/y > 2?y.; 2 j = 2?. - 1. 

The special case g(u) = ce~u /2 (multivariate normal distribution) is due to 
Slepian (1962). The intuitive idea behind (6) is that, under the stated condi
tions, the components Xx, . . . , Xn "hang together" stronger under Px then 
under P2. More results of this type can be found in Chapters 2 and 4. 
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As we saw, one way of defining majorization x < y between vectors in Rn 

is to require that x = (xl9 . . . , xn) belong to the convex hull of the n\ 
permutations 0> , . . . 9y ) of y — (yl9 . . . ,yn). More generally, let G be any 
group of nonsingular linear transformations acting on Rn. For vectors x,y in 
Rn, define x <Gy by the requirement x e conv(Gy) that x be inside the 
convex hull of the orbit of y under G. A function on Rn which is decreasing 
(that is, nonincreasing) relative to this quasi partial ordering of Rn will be 
said to be G-increasing. It is automatically G-invariant, that is, constant on 
each orbit Gy. 

In the special case that G is the group Pn of all n\ permutations of the 
coordinates, a G-increasing (G-decreasing) function on Rn is the same as a 
Schur convex (Schur concave) function. 

An important example of a G-decreasing function is any G-invariant 
unimodal density. Hence, any mixture of G-invariant unimodal densities is 
also G-decreasing. As a slight generalization of a result due to Mudholkar 
(1966), one can show that the class of all such mixtures is closed under 
convolution. The above-mentioned result of Anderson (1955) easily follows 
by taking G as the group consisting of the two mappings x' = x and x' = -JC. 

On the other hand, the (obviously G-invariant) convolution of two G-de
creasing functions need not be G-decreasing, hence, certainly not equal to 
any mixture of G-invariant unimodal densities. Eaton (1980) gave a counter
example with G as the /c-element (A: > 3) group of rotations in the plane R2 

over angles 2irj/k (j = 0, . . . , k — 1). As a positive result, it is a deep 
theorem due to Eaton and Perlman (1977) that the convolution of two 
G-decreasing densities is again G-decreasing provided G is a reflection group. 
By this we mean a closed subgroup of the orthogonal group 0{n) which has a 
dense subgroup generated by some collection of reflections g (each in its own 
hyperplane Hg). 

It turns out that O(n) is the only reflection group which is both infinite and 
irreducible. The case G = O(ri) is somewhat trivial. The case G = Pn is due 
to Marshall and Olkin (1974) and says that the convolution of two Schur 
decreasing densities is again Schur decreasing. As another illustration, let Dn 

denote the group of 2n transformations in Rn which is generated by the n sign 
changes of a single coordinate. A function ƒ on Rn is Dn-decreasing precisely 
when |x,.| < \yt\ (i = 1, . . . , n) imply that/(x) > f{y). 

The monograph by Y. L. Tong contains a multitude of other results and 
leads to many interesting unanswered questions. It is very accessible and no 
comparable work exists. We highly recommend it. 
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An introduction to nonharmonic Fourier series, by Robert M. Young, 
Academic Press, New York, 1980, x + 246 pp., $32.00. 

This is a book about a branch of a branch of analysis; a twig you might 
say. A useful twig I should add, and one bearing many fine blossoms. 

The subject is full of neat results and satisfactory resolutions of open 
problems, and we'll be taking a look at some of these. At first there were 
nonharmonic sines and cosines, sets of the form {sin \x) and {cos A„A:} in 
which {\} is a set of real numbers. Their study was initiated by J. L. Walsh 
[10] at the suggestion of G. D. Birkhoff. Only with the appearance of Paley 
and Wiener's colloquium publication [9] in 1934 did nonharmonic Fourier 
(NHF) analysis really get under way. After having improved on a result 
stemming from O. Szâsz's answer to a problem of G. Pólya's about non
harmonic sines and cosines, they go on to " . . . discuss the closure of the set 
{elX»x, 1} . . . ", i.e., the property that only the null member of L2( —77, IT) is 
orthogonal to every member of the set (the word "closure" is not, thankfully, 
used any more for this property, having been superseded by "completeness"). 
Incidentally a little later we read " . . . the only discussion of a case where 
the sole restriction on \ , . . . is one of the form | \ , - n\ < L < 00 is due to 
Wiener". This is rather misleading since the paper referred to is about 
{cos A„x}, not about sets of complex exponentials {e,XnX}. 

Thus was our subject born, and it is astonishing how much later work has 
its origins in this seminal effort of Paley and Wiener (I tend to think of it as 
the "big bang" of NHF analysis). The problems center chiefly on complete
ness and basis properties of sets {elX»x}, and connections with ordinary 
Fourier series are made via "equi-convergence" theorems; but more of this 
anon. 


