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0. Introduction. It has often been remarked that the subject of real analysis 
had a fallow period during the 1930's and 1940's. Some have laid the blame, 
perhaps unjustly, at the feet of Hardy and Littlewood. It is said that they 
could see little interest in doing the theory of one variable with the additional 
clap-trap of multi-indices. So a lot of time and energy was instead expended 
in constructing exotic counterexamples and exploring remote corners of the 
theory of one variable. Immediate contradictions to what I have just said 
spring to mind: Zygmund, Marcinkiewicz, Saks, Wiener, Bochner, and many 
others did powerful and significant work during this period. But it is safe to 
say that while algebra, algebraic topology, and algebraic geometry were 
developing very rapidly from 1930-1950, real analysis was not making the 
(what by now seems) obvious move into the theory of several variables. 

In retrospect, it is easy to understand how this recession in real analysis 
came about. The differences between real analysis of one and several varia-
bles-subellipticity, propagation of singularities, the existence of singular 
integrals, the failure of the multiplier problem for the ball, the connections 
between covering theorems and the boundedness of integral operators, re­
striction theorems for the Fourier transform, the theory of currents and the 
solution of the general Plateau problem, etc.-all lie very deep. It is amazing 
that anyone discovered these phenomena, much less mathematicians who 
believed that there were no phenomena to discover. Hardy and Littlewood 
could not have conceived what is now painfully clear: that R1 is the excep­
tional dimension, R3 is typical, and R2 is some intermediate bastardization. 

Complex analysis has enjoyed rather a different history. Hartogs dis­
covered quite early (1906) the phenomenon of domains of holomorphy. 
Recall that a holomorphic function of several complex variables is one which 
is holomorphic (in the one-variable sense) in each variable separately. Then 
Hartogs's result is 

THEOREM 1 (HARTOGS). Let 

C2DÜ~ {\zY\ < 1, \z2\ < l)\{\zl\ < 1/2, \z2\ < 1/2}. 

Let ƒ: £2 —» C be holomorphic. Then there is a holomorphic 

f:{\zx\<l, | z 2 | < l } - > C 

such that ƒ \a — ƒ. 

PROOF. For each fixed zl9 \zx\ < 1, write ƒ as a Laurent series in z2, 
00 

AZV Zl) = 2 <*n(z\)z2> 
H=*-00 
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where 

Notice that an is a holomorphic function of zv For 1/2 < \zx\ < l,f(z{, •) is 
holomorphic so an(z^ = 0 for n < 0. By analytic continuation, aw = 0 for 
n < 0. So/(z„ z2) = SJL0

 ö«(zi)z2 defines the desired extension. • 
This contrasts sharply with the situation in one variable. 

THEOREM 2. Let 12 £ C1 be any open set. There is a holomorphic ƒ: 12 -* C 
w/wc/z cannot be analytically continued to any larger open set. 

PROOF. Let {zj)JL\ Q® accumulate at every point of 312 but at no point of 
12. By Mittag-Leffler's theorem, there is a holomorphic ƒ: 12-»C which 
satisfies ƒ ~ *({()}) = {Zj}. If ƒ continued holomorphically past any z G 312, 
then ƒ ~ ^{O}) would have z as an interior accumulation point so ƒ = 0. • 

Finally notice that if 12 Q C is a bounded open set and ƒ is as in Theorem 2 
then F: 12 X 12-»C given by F ^ , z2) = /(^i)/(^2) *s holomorphic in each 
variable separately but will not analytically continue past any point of 
3(12 X 12). So the problem arises of characterizing those domains in C1 which 
have the continuation property of Theorem 1. 

While other interesting phenomena were discovered, such as Poincaré's 
theorem that the ball {\zx\

2 + |z2|2 < 1} and the polydisc {\zx\ < 1, |z2| < 1} 
are biholomorphically inequivalent, it is safe to say that Hartog's phenome­
non had the major influence over the development of the theory of several 
complex variables in the first half of this century. To explain what was done, 
we introduce some auxiliary concepts. In what follows, 12 Q Cn is a connected 
open set and <$ = ?F(!2) the set of holomorphic functions on 12. 

DEFINITION 1. If K (c 12, define 

K = (z Gl2: \f{z)\ < sup |/(z)|, a l l / G 9). 
1 zE:K J 

Call 12 holomorphically convex if K<z 12 implies ^(c 12. 
DEFINITION 2. Assume that 12 ç C has C2 boundary. Call a C2 function p: 

C1 -» R a defining function for 12 if 12 = {z G C : p(z) < 0} and Vp ̂  0 on 
312. 

DEFINITION 3. Let 12, p be as in Definition 2. Let z G 312 and w EiC. Call 
w tangential to 312 at z if S^^Sp/Sz^Xz)^ = 0. 

DEFINITION 4. Let 12, p be as in Definition 2. Call 12 Levi pseudoconvex if 

(*) i / ^ H * * > ° 
for all z G 312 and all w which are tangential at z. 

Definitions 2 and 3 are self-explanatory. To understand Definition 1, 
consider its real variable analogue. Let 12 Ç R^ and § be the family of 
real-valued linear functions (on R^). Then 12 is § -convex if and only if 12 is 
convex in the classical sense. For Definition 4, the real variable analogue is as 
follows. If 12 (cRN has C2 boundary and p is a defining function then 
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a = (av . . . , aN) is called tangential at x E 9fi if 2(9p/9x,)(.x)ay = 0. Then 
fi is convex if and only if ^l(d

2p/dxJdxk)(x)aJak > 0 for all x E 9Î2 and a 
tangential at *. The expression on the left side of (*) (called the Levi form) is 
the holomorphically invariant analogue of this real Hessian. 

Now let us return to our subject proper. It is a nice insight, but not 
exceedingly difficult, to prove that ti is holomorphically convex if and only if 
there is a holomorphic ƒ on £2 which cannot be continued to any larger open 
set. Call such an 12 a domain of holomorphy. It is also not too hard to see that 
a domain of holomorphy with C2 boundary must be Levi pseudoconvex. 
Here is an intuitive proof of this last assertion. If £2 is not Levi pseudoconvex 
then some z E 9£2 has Levi form with a negative eigenvalue. Thus 9Î2 is not 
convex in some complex direction. As a result there is a holomorphically 
imbedded disc b as shown: 

FIGURE 1 

If v is the unit outward normal at P, then K = Uy°li 9(b - v/j) is relatively 
compact in £2 while K D Uy°l x(t> — v/j) is not. 

The Levi problem consists in showing that Levi pseudoconvex domains are 
domains of holomorphy. This problem arose from E. E. Levi's work in 1910 
and was resolved in 1954 by Oka, Bremermann, and Norguet. Given the 
milieu which we described at the beginning of this review, it is not surprising 
that the principal tools which were developed to study the Levi problem were 
algebraic: the Cousin problems and sheaf cohomology (the latter is a far-
reaching generalization of the former). While classical analysis played some 
rôle in the development of the subject of several complex variables in the first 
half of the century (cf. for instance the book of Bochner and Martin [1]), it 
had little influence over the Levi problem and hence was not part of the 
mainstream. As a result, most courses on the subject of several complex 
variables focus on the theory of sheaves leading up to Cartan's Theorems A 
and B. The book of Gunning and Rossi [5], commonly hailed as the first 
modern treatise on several complex variables, represents this algebraic view­
point. It accurately reports the significant developments up to the time of its 
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writing, and has strongly influenced the way most people have learned the 
subject since. In particular, classically-oriented analysts have often found 
several complex variables uninviting. 

New influences came into play around the time that [5] was being written. 
To explain what they were, we shall pass over the theories of complex 
manifolds, Stein spaces, analytic vector bundles, complex differential geome­
try, and a number of other significant branches of the theory, and focus on 
two important developments. 

1. The Cauchy-Riemann equations. If z e C1, write z = (zp . . . , zn) and 
Zj = Xj + iyr Define the differential operators 

a i / a . a \ A a 1 / a , . a \ 

^-ïl^-^j and ^'2[^+%} 
Let 12 c C be open and let u G CX(Q). Then u is holomorphic in the variable 
Zj if and only if u satisfies the Cauchy-Riemann equations in the variable z, 
which is true if and only if du/dij = 0 on 12. 

Let dzj = dxj + idyj9 dij = dxj — idyp y' = 1, . . . ,_w. Define du = 
2y« i(du/dzj)dzj. Then u is holomorphic on 12 if and only if du = 0 on 12. 

Since the solutions on 12 of du = 0 are important it is plausible that the 
following more general problem is also of interest. If 1 < q < n and I = 
(iv . . . , iq) is a multi-index, let dzf = dzix /\ • • • /\dzi. A (0, q) form on Q, is 
an expression /? = S 7 /3I(z)dzI where each /3j G C°°(fl) and the sum is over 
/ ' s of length q. Of course (0, 0) forms are just functions. Define dfi = 2a/?7 A 
dzj. Then the problem is, given a (0, q) form a, to find a (0, # — 1) form « 
with du = a. Since a2 = 0, it is necessary that 3a = 0. It turns out that this is 
sufficient for all 1 < q < n precisely when Q, is a domain of holomorphy. 
Thus the (historically) fundamental problem of the subject is rendered as a 
problem in partial differential equations. By certain classical reduction pro­
cedures, it is sufficient for many purposes to study the system du = a on 
strongly pseudoconvex domains (here a C2 bounded domain is strongly 
pseudoconvex if the Levi form is positive definite—not semidefinite—at each 
point of a£2). After important developmental work by Spencer and Morrey, 
Kohn succeeded in 1964 in proving both existence and regularity theorems 
(in the Sobolev norm) for the â equation on a strongly pseudoconvex domain. 
Hörmander developed a different theory which applies to all pseudoconvex 
domains. 

Here is a typical application of the technique of the a equation. 

THEOREM 3. Let £2 c C1, n > 1. Suppose that for every a = S a ^ z ) ^ . on £2, 
otj smooth with da = 0, there is a smooth u on 12 with du = a. Let f be a 
holomorphic function on co = £2 n {zn = 0}. Then there is a holomorphic F on 12 
withFl=f 

PROOF. Let TT(Z) = (zv . . . , zn_l9 0), z E C\ Let B = {z G 12: <rr(z) $ 12}. 
Then B and co are disjoint relatively-closed subsets of 12. Let <p G C°°(S2) 



BOOK REVIEWS 335 

satisfy <p = 1 on a relative neighborhood of <o and <p = 0 on a relative 
neighborhood of B. We seek an F of the form 

F{z) = <p(z)f{<ir{z))-zn-u(z\ 

where u must be selected to make F holomorphic. This leads to the condition 

0 = âF=(â<p). /(7r(z))~zw .ât /(z) 

or 

c)w(z) = f(ir(z)) • d<p(z)/zn = a(z). 

Then a is smooth since 8<p = 0 on a neighborhood of <o. Also 3a = 0. By 
hypothesis, there is a u solving this equation and we are done. • 

2. Integral representations. The Cauchy integral formula of one complex 
variable is powerful because it reproduces holomorphic functions. What is 
perhaps more significant, however, is that 

is holomorphic off supp fx for any finite Borel measure /A. Via an elementary 
argument with Stokes's theorem, this crucial fact yields an integral formula 
for solutions of the 8 equation. 

THEOREM 4 (SEE [6]). Let a E C^C"). Then the function 

satisfies du = adz. 

Since the compatibility condition d(a(z)dz) = 0 is vacuous in C1, it is easy 
to extend the formula in Theorem 4 to a G L°° with compact support, say, 
and to prove optimal estimates. 

Matters are considerably less simple in several variables. While the formula 
of Bochner and Martinelli (see [4]) is valid on any C2 domain in any C , it 
does not have a holomorphic kernel (except in the case n = 1 when it reduces 
to the classical Cauchy formula). It was only in 1970 that Henkin and 
Ramirez succeeded in constructing an integral representation formula with 
holomorphic kernel for holomorphic functions on a smooth strongly pseudo-
convex domain. As a result of these ideas, Henkin, Grauert-Iieb, Kerzman, 
and 0vrelid were able to obtain integral formulae for solutions to the 8 
equation on strongly pseudoconvex domains. Very precise estimates for 
solutions to the equation could then be computed, and many function-
theoretic problems attacked. 

3. Classical analysis and the theory of several complex variables. Walter 
Rudin begins his book Function theory in the unit ball ofC1 with the assertion: 
"Around 1970, an abrupt change occurred in the study of holomorphic 
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functions of several complex variables. Sheaves vanished into the back­
ground, and attention was focused on integral formulas and on the 'hard 
analysis' problems that could be attacked with them . . . ." 

This is a forgiveable hyperbole. The algebraists have hardly faded from the 
picture. On the other hand, consider the following statistics: in 1958 the 
Math, Reviews had no classification for "Several Complex Variables". In 1959 
there were 85 items under that classification. In 1979 there were 747 items— 
nearly a nine-fold increase. 

Since this jump in output can only in small part be attributed to an 
increase in the number of mathematicians as a whole or an increase in the 
productivity of existing mathematicians, the explanation for it lies elsewhere. 
Our thesis (and Rudin's) is that the theory of the 3 equation and the 
construction of integral formulae changed the face of the subject. This is not 
to say that everything done since 1970 uses these two ideas—far from it. 
Much of the best work on plurisubharmonic exhaustion functions, peaking 
functions, and the geometric structure of pseudoconvex domains requires 
little more than the definitions and an extraordinary amount of insight. On 
the other hand, the study of boundary behavior of biholomorphic maps, the 
theory of approximation of functions, the study of function algebras on 
domains in C", the study of zero sets of functions in the Hardy and 
Nevanlinna classes, the boundary analysis of holomorphic functions—i.e., the 
matière of the classical analyst—have all received an enormous impetus from 
the developments described in §§1 and 2. 

So in the late '60's and early '70's harmonic analysts, function algebraists 
and complex function theorists were given a theoretical framework in which 
they could relate to several complex variables. Hörmander's classic book [6] 
constitutes a good introduction to the 3 equation and the point of view it 
engenders. But it does not, indeed for chronological reasons it could not, 
describe most of the function-theoretic developments to which we have 
alluded above. There is a need for a book which does so, and Rudin's book 
addresses this need. 

4. Rudin's book. It is not surprising that classical analysts, when approach­
ing several complex variables, would try to use the ideas they already know to 
understand the new subject. This point of view has been extraordinarily 
successful on the ball and the polydisc for two reasons: (i) they both are 
closely related, especially via Schwarz's lemma, to the disc, and (ii) they both 
have a transitive group of biholomorphic self maps. A remarkable result of 
Bun Wong and Rosay shows that matters are rather different for arbitrary 
open sets in C 

THEOREM 5. Let 2 ( ç C be an open set with C2 boundary. If Q has a 
transitive automorphism group then SI is biholomorphic to the ball. 

The importance of this result lies in the fact that "most" domains are not 
biholomorphic to the ball. More precisely, let us topologize the collection of 
all C00 strictly pseudoconvex domains by using the C°° topology on defining 
functions. Call a domain rigid if its only biholomorphic self map is the 
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identity. The following is a consequence of work of Bums-Shnider-Wells and 
Greene-Krantz. 

THEOREM 6. The collection of smoothly-bounded rigid strongly pseudoconvex 
domains is dense and open in the collection of all smoothly-bounded strictly 
pseudoconvex domains. In particular, the rigid strictly pseudoconvex real ana­
lytic domains are dense. 

So the study of the ball is the study of a very special domain indeed. In one 
variable, there is little loss of generality to do analysis on the disc because the 
disc is biholomorphic to any simply connected proper domain. But the ball is 
biholomorphic to virtually nothing else. 

The advantage of studying the ball is that with essentially no specialized 
preparation one can immediately appreciate many differences between one 
and several complex variables. But what is absolutely essential to understand is 
that, for the most part, the differences one discovers on the ball are those that 
arise from the presence of several complex directions, not those that arise 
from the complex geometry of the boundary and the Levi form. (Still we must 
make a caveat: important work of Folland and Stein [3] and Fefferman [2] 
has shown that a strongly pseudoconvex boundary point has many of the 
significant properties of the boundary of the ball. Function theorists have not 
exploited this point of view as much as they might.) 

Rudin's book does not consider the subject of several complex variables as 
it has traditionally (i.e., prior to 1964) been studied. It also does not consider 
the full force of what has taken place in the last fifteen years. But it purports 
to do neither. Rather, it presents those ideas, mostly function-algebraic in 
character, which can be developed fairly quickly and which demonstrate that 
the ball is not merely the disc with multi-indices. As Rudin points out in his 
preface, he does occasionally consider arbitrary domains in C1; however he 
does so only when the additional generality involves no additional work, i.e. 
only when he can avoid doing Levi geometry. 

Rudin's point of view is particularly successful in his presentation of the 
Henkin-Skoda theorem which characterizes the zero sets of functions of the 
Nevanlinna class. This is a theorem whose full statement and proof (on 
strongly-pseudoconvex domains) involves such subtle methods as the theory 
of currents. On the ball, Rudin is able to give a fairly clean presentation and, 
by avoiding many technicalities, do his readers a great service. Similar success 
is achieved with some of the results on peak interpolation sets. 

It is a truism for function theorists of several complex variables that the 
ball is a proving ground for theorems about strongly pseudoconvex domains. 
But in many instances the generalization of a theorem from the ball to the 
strongly pseudoconvex case is quite hard and involves new techniques (such 
as [3]). Rudin's decision to concentrate on the ball abrogates the question of 
how the boundary geometry influences the function theory on the interior. 
That it still reveals interesting new phenomena is a triumph both of technique 
and insight. But, by and large, the point of view Rudin has chosen is to see 
how one-variable questions undergo metamorphosis in C1 rather than to see 
what new questions might be posed. 
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The reader who approaches the book with the correct expectations will find 
much that is pleasing and informative. Many important ideas, such as the 
Bergman and Szegö integrals, integral formulae for the 3 equation, spherical 
harmonics, and tangential Cauchy-Riemann equations are neatly introduced 
and quickly applied. The student will find this feature, together with the very 
concrete nature of the theorems, most appealing. It is refreshing to see a book 
on this subject with coordinates, with computations, and with theorems that 
have brief statements with immediate impact. Let us give one illustration. 

If B çC1 is the ball, 0 <p < oo, let HP(B) = {ƒ holomorphic on B: 
suPo<r<i f\f(r$)\p do(Ç) < oo}. Here a is rotationally-invariant area measure 
on dB. Recall that when n = 1 a set {zj)JL\ can be the zero set of an ƒ G Hp 

if and only if 2(1 — \zj\) < oo. Notice that the condition does not depend on 
p. In striking contrast we have 

THEOREM 7 (RUDIN). Let 0 <p0 < oo, n > 1. There is a set Z c B such 
that Z is the zero set of an f G HPo(B), but is not the zero set of any ƒ G Hp, 
P >Po-

The proof, as is the case with many of those in the book, consists of 
ingenious use of purely classical techniques (Hardy and Littlewood knew the 
necessary tools). While the ball is very special, it cannot be denied that 
Theorem 7 provides important information to those who want to explore 
more general domains. 

To my mind, Rudin has been the principal figure among those who have 
applied one-variable techniques to discover new phenomena in Cn. This book 
is in many ways a catalogue of his results and those of his collaborators and 
followers. That is both an advantage and a disadvantage: on the one hand the 
book collects a lot of material which is scattered throughout the literature and 
provides an extensive and thoroughly researched bibliography; on the other 
hand it has the disjointed features of a catalogue, does not develop to any 
particular climax, does not have any unifying theme (except for the ball 
itself). In my view the book would be inappropriate for a first course in 
several complex variables. However it would be a fine choice for a second 
course, for a portion of a complex analysis or functional analysis course, or 
for a "topics" seminar. It will also be a useful reference, or a nice book to dip 
into from time to time. 

Since Rudin dreams up such excellent exercises, it is too bad that he did 
not do so in this book. Several complex variables is a subject in which the 
student has much trouble getting started; Rudin's book will help alleviate the 
problem, but exercises would help a great deal. I also wish that some of the 
theorems were not formulated in such generality. For instance, Rudin's 
formulation of Theorem 7 is much more general than my own and for that 
reason loses a lot of its impact. 

The book's positive features clearly majorize the few negative ones: it is 
lucid and accessible, it is written by the right person at the right time, and it 
will acquaint a lot of new (and heretofore apprehensive) people with a rapidly 
growing subject. It will probably contribute to another nine-fold increase in 
§32 of the Math. Reviews by the year 1999. 
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THE BRAVE NEW WORLD OF DETERMINANCY 

The birth of descriptive set theory was marked by one of those curious 
events that occasionally act as a catalyst for an important discovery. An error 
found by a twenty year old student in a major work by a famous mathemati­
cian started a chain of theorems leading to the development of a new 
mathematical discipline. 

For the background on the beginnings of the theory of analytic and 
projective sets let us go back to the early years of this century, to France, 
where Messrs. Baire, Borel and Lebesgue were laying foundations of modern 
function theory and integration [5, 2, 16, 6]. A real-valued function of several 
real variables is a Baire function if it belongs to the smallest class of functions 
which contains all continuous functions and is closed under the taking of 
pointwise limits. A set in real «-space is a Borel set if it belongs to the smallest 
class of sets which contains all open sets and is closed under the taking of 
countable unions and intersections. Baire functions form a hierarchy, indexed 
by countable ordinal numbers: functions of Baire class 0 are the continuous 
functions, functions of Baire class 1 are the limits of sequences of continuous 
functions, and in general, functions of Baire class £ are the limits of sequences 
of functions belonging to Baire classes smaller than £. Borel sets are similarly 
arranged in a hierarchy: sets of 2-class 1 (2?) and II class 1 (II?) are, 
respectively, the open sets and the closed sets, and for each countable ordinal 
£, the class 2° (the class n£) consists of all countable unions (countable 
intersections) of sets belonging to classes smaller than £. There is an intimate 
relationship between the hierarchies of Baire functions and of Borel sets; this 
relationship was extensively studied by Lebesgue in [17], For instance, a 


