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THE BRAVE NEW WORLD OF DETERMINANCY 

The birth of descriptive set theory was marked by one of those curious 
events that occasionally act as a catalyst for an important discovery. An error 
found by a twenty year old student in a major work by a famous mathemati­
cian started a chain of theorems leading to the development of a new 
mathematical discipline. 

For the background on the beginnings of the theory of analytic and 
projective sets let us go back to the early years of this century, to France, 
where Messrs. Baire, Borel and Lebesgue were laying foundations of modern 
function theory and integration [5, 2, 16, 6]. A real-valued function of several 
real variables is a Baire function if it belongs to the smallest class of functions 
which contains all continuous functions and is closed under the taking of 
pointwise limits. A set in real «-space is a Borel set if it belongs to the smallest 
class of sets which contains all open sets and is closed under the taking of 
countable unions and intersections. Baire functions form a hierarchy, indexed 
by countable ordinal numbers: functions of Baire class 0 are the continuous 
functions, functions of Baire class 1 are the limits of sequences of continuous 
functions, and in general, functions of Baire class £ are the limits of sequences 
of functions belonging to Baire classes smaller than £. Borel sets are similarly 
arranged in a hierarchy: sets of 2-class 1 (2?) and II class 1 (II?) are, 
respectively, the open sets and the closed sets, and for each countable ordinal 
£, the class 2° (the class n£) consists of all countable unions (countable 
intersections) of sets belonging to classes smaller than £. There is an intimate 
relationship between the hierarchies of Baire functions and of Borel sets; this 
relationship was extensively studied by Lebesgue in [17], For instance, a 
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function ƒ: R -» R is a Baire function if and only if for every interval (a9 b% 
the set {x: a <f(x) < b} is a Borel set. 

Among others, Lebesgue showed that the hierarchy of Borel sets is a true 
hierarchy: for each countable ordinal £ there is a Borel set of class £ that does 
not belong to any smaller class; in fact there exists a S£ set which is not EC. 
For small £, examples can be found in mathematical practice: for instance, 
the set of all rational numbers is 2° (a^so called Fa in a different notation) but 
not EC (i.e. Gd). For an arbitrary | , Lebesgue employed a method that 
generalizes Cantor's diagonal construction. 

It was while reading Lebesgue's work [17] ten years later, that young 
Mikhail Suslin discovered an error on one of Lebesgue's proofs (cf. [24]). 
Suslin was a student of N. Luzin, who with a circle of young collaborators 
embarked on a systematic study of sets of real numbers. Another student of 
Luzin, P. Aleksandrov, had just proved [1] (and so did Hausdorff [13]), that 
every uncountable Borel set has the cardinality of the continuum. (For closed 
sets, this is the Cantor-Bendixson theorem [3].) 

The theorem with a false proof states that if a Baire function has an 
inverse, then the inverse is also a Baire function. The theorem is true and was 
subsequently proved by Luzin. Lebesgue however employed the following 
false lemma: If 

is a decreasing sequence of sets in the plane, then the projection to the x-axis 
of n^°= 1 Sn is equal to the intersection of projections of the Sn. Suslin noted 
the fallacy of this argument, as well as of its corollary stated in Lebesgue's 
article: The projection of a Borel plane set is a Borel set of reals. 

That statement is false: indeed, the projection of a Gs set in the plane need 
not be a Borel set. Suslin went beyond proving Lebesgue wrong, he realized 
that he was dealing with an important property of sets of points. So he singled 
out the new class of sets, subsequently called analytic sets, namely the 
projections (or continuous images) of Borel sets. He laid the foundations of 
the theory of analytic sets in [27] (the only paper he wrote, and it was 
published after his death). Among others, he characterized analytic sets in 
terms of a set-theoretic operation (thereafter called Suslin operation) which 
appeared implicitly in Aleksandrov's proof mentioned above. From this 
characterization it was easily deduced, by Suslin himself and by others, that 
analytic sets are well behaved: every analytic set is Lebesgue measurable and 
has the Baire property (i.e. differs from an open set by a meager set), and 
every uncountable analytic set contains a perfect set and is thus of cardinality 
2*°. The main result of [27], the Suslin theorem, states that Borel sets are 
exactly those sets which are analytic and whose complement is also analytic. 

Although the above discussion deals with sets in R", the theory of analytic 
sets works equally well for any separable complete metric space. In fact, the 
prototype of such a space is the Baire space 91 which is just the set <ow of all 
infinite sequences of natural numbers with the product topology. For techni­
cal reasons, the Baire space is more in favor with descriptive set theorists than 
the real line, so I shall conform and confuse reals with functions a : <o -» co. 
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Luzin, Sierpinski and others developed Suslin's theory further, as follows: 
Let us call a set of reals projective if it is obtained from a Borel set by a finite 
number of projections and taking the complements. This defines the follow­
ing hierarchy of sets (in modern notation): 

2} = analytic sets, IIJ = complements of analytic sets, 

2-i+i " projections of IX̂  sets, II*+ 1 = complements of 11* + , sets. 

We also define 

A1 = s1 n n1. 
Then Suslin's Theorem can be stated as 

A} = Borel 

and the projective sets form a hierarchy 

A A 
o ° ^ 
o o o 

That this is a true hierarchy, with all the inclusions proper, can be shown by 
an extension of Lebesgue's method. 

A prototypical example of a II} non-Borel set is the set of all well-orderings 
of co (in the space of all binary relations on co). The fact that being well 
ordered is a 11} property but not 2} is central to modern descriptive set theory 
and numerous results are based on generalizations of the theory of II} sets. A 
related but more mathematical example is the following (due to Luzin) of a 
2} set that is not Borel: 

(a G 91: there are infinitely many numbers among the 
a(0), a(l), a(2), . . . that divide each other}. 

The early study of projective sets was closely related to the problem of 
definability and "effectiveness" in mathematics, and particularly to the ques­
tions arising from the use of the axiom of choice. Ever since Zermelo's proof 
[30] that every set can be well ordered and his introduction of the axiom of 
choice there have been discussions among mathematicians whether indis­
criminate use of the axiom of choice is legitimate and what constructions, 
particularly what constructions of sets of reals, can be done "effectively", 
without the use of the axiom of choice. Particularly vociferous were French 
analysts in the 20's and 30's and they objected mostly to uncountable choice, 
i.e. simultaneous choice from uncountably many sets. (One has to realize that 
even the elementary theory of measure and category requires countable 
choice: for instance, one has to make a countable number of choices even to 
prove the simple fact that the union of countably many countable sets of reals 
is a countable set.) An application of uncountable choice yields such "unde­
sirable" results as a nonmeasurable set of reals, a set without the Baire 

A 
° o o 

A} A» 

ni 
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property, or an uncountable set with no perfect subset, and there seems to be 
no "effective" construction of such examples. 

Now clearly the concepts of definability and effectiveness are difficult to 
formulate in the language of mathematics alone and the problems of defina­
bility have eventually had to be handled by logicians. But it is also clear that 
the theory of projective sets, which is based on such simple concepts as open 
sets and continuous functions and using countable operations such as U ^L0 

is a good approximation of what most mathematicians would consider 
"definable" or "effective". And this intuition of the early descriptive set 
theorists was remarkably confirmed by developments, some thirty years later, 
in a branch of mathematical logic called recursion theory, 

* * * 

In the meantime, descriptive set theory first flourished and then more or 
less came to a halt. Among the notable results were a detailed analysis of the 
structure of II} and H\ s e t s (showing for instance that every uncountable II} 
set must have cardinality either #x or 2*°), theorems on reduction and 
separation (again dealing with II} and Sj sets) and the uniformization theorem 
of Kondô [15]: every II} set A in the plane contains a II} graph of a function 
which has the same projection as A. But there were no results on projective 
sets beyond level 2 and even simple questions about S j remained un­
answered. For instance: is every 2^ set measurable? 

There is a good reason why classical set theory cannot settle problems on 
projective sets beyond level 2. In 1938, Gödel gave his famous proof of 
consistency of the continuum hypothesis [11]. He constructed a model of set 
theory, the universe L of constructible sets, in which the continuum hypothesis 
holds, and consequently, it cannot be refuted from the axioms of set theory 
alone. (Years later, Cohen proved independence of the continuum hypothesis 
[7] by constructing a model in which the continuum hypothesis fails.) Gödel's 
model L has other remarkable properties, one of them being that there exists 
in L a well ordering of the set of all reals (in L)1 which has order type Hx and 
is A£. AS a result of this property, the following theorems are true in L, and 
consequently cannot be refuted from the axioms of set theory: 

(a) There exists a ùk\ set of reals which is not Lebesgue 
measurable and does not have the property of Baire. 

(b) There exists an uncountable II} set of reals that has no 
perfect subset. 

In contrast, Cohen's proof provided a method which makes it possible to 
prove that it is consistent that every projective set is Lebesgue measurable 
and has the Baire property, and if uncountable, has a perfect subset (Solovay 
[26]). 

These examples demonstrate the limitations of classical descriptive set 

*A nonlogician might not be aware that unlike natural numbers, real numbers are not 
God-given (to paraphrase Kronecker), and it is not the case (or rather it cannot be proved) that 
every real is in the model L. 
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theory in the investigation of projective sets. Indeed, the extensive use of 
Cohen's method in the 60's and 70's established that many a natural question 
on projective sets is independent of the axioms of set theory. (A different kind 
of limitation is the availability of new methods: recent results of Martin [21] 
on the height of S^ well-founded relations and of Silver [25] on II} equiva­
lence relations are in the spirit of classical descriptive set theory but their 
proofs use techniques not available twenty years ago.) 

* * * 

Those who worked in descriptive set theory were well aware of the 
connection between the theory of projective sets and logic. After all? the 
operations used in the construction of projective sets correspond to standard 
logical operations. To illuminate this connection, let me analyse the example 
given above, the set of all well orderings of the set co of all natural numbers: 

W = [E Ç co X co: is is a well ordering of co}. 

A relation E belongs to W if 
(i) E is a linear ordering of co, and 
(ii) there exists no infinite sequence a(0), a(l), . . . , a(«), . . . such that 

a(n + l)Ea(n) for all n G co. 
While the set of all linear orderings is a closed set in the space X of 

relations, property (ii) states 

-i3aVn(a(n + \)Ea(n)). 
Now the negation -i corresponds to the taking of complements, the existen­
tial quantification 3a corresponds to projection (from £ X 91 to X) and 
universal quantification Vn amounts to the taking of countable intersection 
H ^L0* I* follows that W is the complement of the projection of a closed set in 
£ X 91, and therefore a 11} subset of 36. 

This connection between descriptive set-theoretic and logical operations is 
just an aspect of the close relationship between the theory of projective sets 
and recursion theory. It is ironic that this close relationship remained un­
noticed by the recursion theorists until after a considerable amount of work 
duplicating or parallel to the earlier work in descriptive set theory. 

Like most other branches of modern logic, recursion theory originated in 
the work of Kurt Gödel [10]. In its simplest form, the theory of recursive 
functions attempts to capture the concept of "effectively computable" func­
tions from co to to. A set of natural numbers is recursive if its characteristic 
function is a recursive function. In [14], Kleene extended recursion theory to 
functions ("f unctionals") whose arguments are functions ƒ: co —> co. In particu­
lar, he introduced the notions of recursive sets in cow and (partial) recursive 
functions from cow to co and from cow to cow. Most of the work of Kleene and 
his followers deals with a hierarchy of sets that resembles the hierarchy of 
Borel and projective sets. And a closer look reveals that indeed, Kleene's 
notions are refinements of the classical ones. 

The notions of Kleene's recursion theory can be relativized to allow for 
parameters a E cow; thus for each a one obtains sets and functions recursive 
in a. And it so happens that a function/: 91 -» 91 is continuous if and only 
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if it is recursive in some a G 91. The analogy extends to projective sets. Let 
2} (lightface!) denote the class of sets of the form 3a VnR where R is 
recursive. Then a set is 2} if and only if it is S{ in some a E 91. The classes 
2j[ and II* are defined accordingly. (Incidentally, one of Kleene's major 
results was the theorem stating that A} = hyperarithmetical, which is the 
"effective form" of Suslin's theorem.) 

Once the analogy between classical descriptive set theory and recursion 
theory was established, descriptive set theory became the domain of logicians. 
Not only does the logical symbolism simplify notation and clarify many 
complicated constructions, but the analogy makes available to the descriptive 
set theory techniques from recursion theory. An example is Kleene's recursion 
theorem which does not have an analog in the classical theory. 

* * * 

As a result of the work following Cohen's discoveries, it is more or less 
clear that not much more can be decided about projective sets in set theory 
alone. The major questions are independent of the axioms of set theory, and 
similarly as in the case of non-Euclidean geometries, one might consider 
various additional axioms that lead to different set theories, with different 
consequences for the theory of projective sets. A somewhat more promising 
approach is to study consequences for descriptive set theory of large cardinals 
axioms. These axioms postulate the existence of certain large cardinal num­
bers and are justified on philosophical grounds, as they increase rather than 
restrict the extent of the set-theoretic universe. Now large cardinals have a 
definite effect on the theory of projective sets. For example, if measurable 
cardinals exist, then every H\ set of reals is Lebesgue measurable and has the 
property of Baire [26]. But by and large, descriptive set theory would today be 
more or less at a standstill, if it was not for its extraordinary resurgence based 
on the study of consequences of a somewhat peculiar postulate, the axiom of 
determinacy. 

The axiom of determinacy leads to an extremely fruitful theory, with 
remarkable consequences for the theory of projective sets. It is by no means a 
universally accepted axiom. Its unusual nature and the unique techniques 
associated with it make its theory strikingly different from the rest of set 
theory. The brave new world of determinacy is unlike our good old Cantor's 
universe; it's a strange world of infinite games, full of surprises for a 
conventional set theorist. 

* * * 

The first example of an infinite game was given by Mazur in 1935.2 The 
Polish mathematicians in the city of Lwów (later to be annexed by the Soviet 
Union) were meeting regularly in the Scottish Coffee House and kept there a 
notebook in which they entered a number of interesting mathematical prob­
lems. This by now famous "Scottish Book" was eventually translated and 
made public by Ulam [28]. Under the title Definition of a certain game the 

2In his book Adventures of a mathematician [29], Ulam states: "In a conversation in the coffee 
house, Mazur proposed the first examples of infinite mathematical games". 
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book lists the following problem (#43) of Mazur: Let E be a set of real 
numbers. Consider a game between two players I and II where I selects an 
interval [al9 bx]9 then II selects an interval [a29 b2] Q[al9 b{\, then I selects an 
interval [a39 b3] Ç [a29 b2] and so on. I wins if the intersection PI*.! 
[an, bn] contains a point in the set E; otherwise he loses. Is it true that there 
exists a method of winning for the player I for those and only those sets E 
that are comeager in some interval; similarly, does a method of win exist for 
II if and only if E is meager? Mazur's problem (which was solved by 
Banach-and presumably won for him one bottle of wine offered by Mazur) is 
a special case of a more general problem: 

Let X be a fixed nonempty set. With each set A of infinite sequences from 
X9 we associate a two-person game G = GX(A) as follows. Players I and II 
alternatively choose members of X ad infinitum: First, I chooses a0 G X9 then 
II chooses ax G X9 then I chooses a2 G X9 then II chooses a3 G X9 and so on. 
Player I wins if the sequence {tf„}£L0 is in A9 otherwise II wins. A strategy for 
player I is any function a whose agruments are all finite sequences from X of 
even length (including the empty sequence) with values in X, A strategy o for 
I is a winning strategy if for any sequence {al9 a39 a59 . . . } (of moves of player 
II) in X9 the sequence 

a(0) 

o(a09 ax) 

a(a0, al9 a29 a3) 

belongs to A (is a win for player I). A strategy (a winning strategy) for player 
II is defined similarly. The game GX(A) is determined if at least one player has 
a winning strategy (clearly, both players cannot have a winning strategy). The 
general problem is: what games GX(A) are determined? [It is well known that 
similarly defined finite games, i.e. games that end after a finite number of 
moves, are determined.] 

Disregarding the general case, let us turn to the special case when either 
X = {09 1} or X = co = the set of all natural numbers. Since these two cases 
are known to be practically equivalent, let us simply let X = co, and let us call 
a set A Q cow determined if the game G{A) is determined. 

Axiom of determinacy (AD). Every set A Q oo03 of infinite sequences of 
natural numbers is determined. 

Granting the axiom of determinacy, one can formulate a multitude of 
infinite games for which one can then prove that they are determined. One 
example is the aforementioned Banach-Mazur game. Note that if that game is 
determined then every set of real numbers has the property of Baire. Using a 
different game, one can similarly deduce that every set of reals is Lebesgue 
measurable [23], or that every uncountable set of reals has a perfect subset. 
Note that each of these statements is false in set theory with the axiom of 
choice, and so AD contradicts the axiom of choice. On the other hand, the 
countable axiom of choice (at least for sets of reals) is a consequence of AD. 

ao = 

a\ 
a2 = 
a3 

«4 = 
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The fact that the assumption of AD eliminates some "unpleasant" conse­
quences of the axiom of choice is certainly notable and perhaps with that in 
mind Mycielski and Steinhaus proposed in [22] to replace the axiom of choice 
by the axiom of determinacy in the development of mathematics. Although 
this proposal has not been accepted (even the majority of those working with 
AD do not consider it a "true" principle), subsequent results and methods 
associated with the axiom made AD an attractive subject of study. 

One remarkable feature of the axiom of determinacy is its connection with 
the theory of large cardinals. The first indication of this was Solovay's result, 
in 1967, showing that under AD, Nj is a measurable cardinal. In ordinary set 
theory (with the axiom of choice), measurable cardinals are large (Nj is too 
small to be measurable), but it is the existence of a measurable cardinal (even 
if it is N,) that provides the connection with the theory of large cardinals. For 
one can then construct a model of ZFC, the Zermelo-Fraenkel axiomatic 
system with the axiom of choice, that has a measurable cardinal. This link 
between determinacy and large cardinals has been considerably extended and 
exploited. One consequence is that one cannot hope to establish the con­
sistency of AD without assuming some (rather strong) large cardinals hy­
potheses. 

There is even a stronger link between determinacy and projective sets. 
Already Solovay's result makes an essential use of a certain basic property of 
II} sets (the boundedness lemma). It was however Blackwell's paper [4] that 
firmly established the game-theoretic method in descriptive set theory. 
Blackwell gave a new proof of this theorem of Kuratowski: If A and B are 11} 
sets of reals, then there are disjoint II} sets Ax Q A and BXQ B such that 
Ax u Bx = A u B (the reduction principle for II} sets). In the proof, he used 
the known fact [9] that closed games are determined. As the method of proof 
is quite general, one can, for instance, use AD to extend the reduction 
principle to higher levels of the projective hierarchy. 

Much of the current research on AD deals with extending the theory of II} 
and 2 ] s e t s t o higher levels of the projective hierarchy and beyond. It has 
been established that the classes II* with odd n and the 2 ^ with even m have 
very similar properties as the class II} (or 5^) a n d m e classes 11* with even n 
and the Hl

m with odd m behave similarly as the class H\. In fact, there is a 
transfinite hierarchy of pointclasses (classes of sets of reals) extending well 
beyond projective sets and many properties of 11} sets (such as uniformiza-
tion) can be proved for these pointclasses. 

Compared to Cantor's universe, the world of determinacy (or at least its 
part comprising of sets of reals) is remarkably structured. The loss of the 
axiom of choice is amply compensated by the construction principles derived 
from existence of winning strategies in various infinite games. So for example 
many sets of reals admit a representation similar to Suslin's operation. Or, 
consider this: if A and B are sets of reals, we say that A is reducible to B if 
there is a continuous function ƒ such that A = f_x(B). Now AD implies that 
for any two sets of reals A and B, either A is reducible to B or B is reducible 
to the complement of A. 

What is fascinating on the world of determinacy is the interplay of 
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set-theoretic, game-theoretic and recursion-theoretic methods. These methods 
include such diverse techniques as ultrapowers and partition properties on 
one hand and the recursion theorem and inductive definability on the other. 
But it is not an easy world to grasp. For instance: what intuition could 
possibly be behind the fact that H{ and tf2 are measurable cardinals, but for 
every n > 3, Nrt is a singular cardinal (of cofinality N^? &&& **<o+i and Nw+2 

are again measurable. 
As mentioned above, all closed sets A ç 91 are determined. The natural 

question arises whether AD holds for, say, all projective sets. Besides, de­
terminacy of projective sets does not seem to contradict the axiom of choice 
and so the axiom of projective determinacy naturally offers itself as an axiom 
for descriptive set theory, more plausible (albeit less powerful) than AD. 
However, despite considerable progress in this area, the main question, 
whether projective determinacy is consistent, is still unresolved. The present 
state of knowledge is this: All Borel sets are determined (Martin [19]). And 
IlJ- and n^-determinacy are essentially large cardinals axioms; more pre­
cisely, n}-determinacy is equivalent to a certain standard large cardinals 
axiom, while Ilj-determinacy follows from another, stronger, standard large 
cardinals axiom (Martin [18], Harrington [12], Martin [20]). The consistency 
of Il]-determinacy is still an open problem and so until proven consistent, the 
axiom of projective determinacy has to be considered a speculative axiom. 

* * * 

It is this world of determinacy that Moschovakis explores in his book. 
Although determinacy itself is not investigated until Chapter 6, everything in 
the book indicates that the author's view of descriptive set theory is biased 
toward infinite games. From the early pages of the book, the development of 
the general theory, and even the selection of theorems of classical descriptive 
set theory is definitely tailored to be used later under the assumption of 
determinacy. Those descriptive set theorists who are less enthusiastic about 
determinacy may object that results not directly related to determinacy are 
either omitted or played down but the book does not claim completeness, and 
besides, its coverage of the basic material in descriptive set theory is ade­
quate. [The author deliberately omitted those parts of descriptive set theory 
that use forcing (a phobia of forcing?) or admissible sets.] The book is 
extremely well organized and shows that the author put many years of work 
into writing the book. 

* * * 

The underlying assumption throughout the book is that infinite games on 
natural numbers are determined. For the author, this is not just a technical 
assumption. In his (platonist) view of the set-theoretical universe, assertions 
on infinite sets are either true or false. And this presents for him a dilemma: 
since he believes that the axiom of choice is true, the axiom of determinacy 
must be false. Moschovakis resolves this dilemma by replacing the axiom of 
determinacy by the assumption that AD holds in the model L(9l) of all sets 
constructible from the reals. (Formally, this distinction is immaterial, as the 
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consistency of the substitute assumption is equivalent to the consistency of 
AD.) 

The way the author treats the axiom of choice is a logical extension of these 
assumptions. If the axiom of choice holds in the universe then the model 
L(9l) satisfies the countable axiom of choice and, in fact, a somewhat 
stronger principle of dependent choices (PD). And so while it is explicitly 
pointed out whenever the full AC is used, and even a list is made of these 
uses, the countable axiom of choice (and PD) is used throughout the text 
without any reference. This is somewhat disappointing, in particular in the 
development of the Borel hierarchy where only a passing allusion is made to 
the countable axiom of choice. After all, the problems related to definability 
are central to descriptive set theory, and the question of what form of the 
axiom of choice one should use was once hotly disputed. The main reason 
why the countable axiom of choice is (unlike the full AC) widely accepted by 
descriptive set theorists is that it is indispensable: it is for instance necessary 
for the proof of closure of 2° sets under countable unions. (In the model [8] 
of Feferman and Levy, the set of all reals is the union of countably many 
countable sets.) 

* * * 

With very few exceptions, Moschovakis' writing is rigorous but readable. A 
notable departure from his otherwise meticulous style are the exercises in 
Chapter 8G. There the author assembled a collection of very interesting new 
results, but the less polished presentation and some unfortunate misprints 
make this fascinating material less accessible to the nonexpert reader. Other­
wise, there are very few misprints (which one hopes will be corrected in the 
second printing). 

I like the book; it is on my list of books that I would take with me, if not to 
a deserted island, then at least when going on a sabbatical. What I do not like 
about the book is its price. Almost $75 is a lot of money to pay for a book, 
even for a fine book like this one. 
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Hopf algebras, by Eiichi Abe, Cambridge Univ. Press, 1980, translated by 
Hisae Kinoshita and Hiroko Tanaka, xii + 284 pp., $39.50. 

The Hopf algebras under consideration are not the graded 
coalgebras/Hopf algebras of algebraic topology. Rather these are the Hopf 
algebras whose study was motivated by such examples as group algebras, 
universal enveloping algebras of Lie algebras and representative functions on 
Lie groups and Lie algebras [5, 6, 8]. Indeed the emphasis in Abe's book is on 
Hopf algebras which are either commutative or cocommutative. About twelve 
years ago another book by the same title appeared [14]. Since the first Hopf 
algebras was published, some open questions in Hopf algebra theory have 
been answered, and coalgebras/Hopf algebras have enjoyed wide applica­
tion. This book presents the answer to one of these questions—uniqueness of 
Hopf algebra integrals. It presents two important areas of Hopf algebra 
applications—to algebraic groups and to field theory. A book like Abe's Hopf 


