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0. Introduction. From the beginning of Banach algebra theory in the funda
mental papers of Gelfand and his collaborators in the 1940s, particularly the 
classic paper [6], the spectrum has played a key role both in the general theory 
and in its many applications. Recall that if a belongs to the complex Banach 
algebra A with identity, then the spectrum, Sp(fl) or Sp^(a), of a is the set of 
complex numbers X for which X — a is not invertible in A. Recall also that 
Sp(tf) is a compact nonvoid subset of complex numbers [3, 15]. To avoid 
technicalities in this review, we will not discuss real Banach algebras or 
algebras without identity, though Aupetit and the standard treatises [3, 15] 
sometimes do. 

The spectrum is an important and natural concept in the standard examples 
of Banach algebras that occur in applications. For operators on a Banach 
space the spectrum is the usual operator spectrum, and the essential spectrum 
or Fredhölm spectrum is just the spectrum in the Calkin algebra. For com
mutative group algebras like L\R) with an identity adjoined, the spectrum of a 
function is just the range of its Fourier transform union {0}. 

For C(X), the algebra of continuous functions on the compact Hausdorff 
space X, the spectrum of a function is its range. For an arbitrary commutative 
Banach algebra A the Gelfand transformation [6] is a continuous algebra 
homomorphism a -> â from A to an appropriate C(X) and, moreover, Spy4(û) 
= â(X). Thus the Gelfand transformation shows that the behavior of the 
spectrum is particularly simple in commutative Banach algebras. One focus of 
recent research is to determine to what extent simple spectral behavior entails 
commutativity. 

The two standard treatises on Banach algebras [15, 3] were published in 1960 
and 1973, respectively, and thus do not describe the enormous number of 
interesting results discovered in the last decade. Aupetit's book is a very 
comprehensive report on those recent results which are related to spectral 
theory, many of which are due to Aupetit himself. (For excellent reports on the 
most important other recent results, see [2, 5, 17].) From now on we will 
usually refer to Aupetit's book as [AUP]. 

Many of the recent advances in spectral theory come from the exploitation, 
largely by Aupetit, but also by Jaroslav Zemânek and his collaborators, of the 
subharmonicity of various functions of the spectrum. Explicitly, if we let 
p(a) = max(Sp(a)) be the spectral radius of a and let 8(a) be the diameter of 
Sp(a), and if f(X) is any analytic function from a domain of complex numbers 
to a Banach algebra, then p(/(X)), logp(/(X)), 8(/(X)), and logô(/(X)) are 
all subharmonic [AUP, pp. 9-11]. In applications, f(X) is usually an explicit 
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function like a + X(x — a\ (X — a)~\ or eXbae~Xb, and three kinds of proper
ties of subharmonic functions play a key role. 

(1) If h(\) is a subharmonic function then limsupx^x0 H^) — h{\0). More
over, this remains true if we restrict X to a set E which is "nonthin" at X 0, in 
particular if X0 belongs to the closure of a nontrivial component of E [AUP, 
pp. 170-171]. 

(2) A subharmonic function satisfies certain growth conditions like the 
maximum modulus property and Liouville's theorem. 

(3) If a subharmonic function like log p(f(X)) is -oo "often enough" then it 
is identically -oo. Here "often enough" means on a set with positive outer 
logarithmic capacity. A set has positive outer capacity if, for example, it has 
nonvoid interior, or positive Lebesgue or Hausdorff measure, or is not totally 
disconnected [AUP, pp. 172-173]. 

As a first easy illustration of the application of subharmonic functions, 
Aupetit shows [AUP, Corollary 2, p. 11] that if the set of quasinilpotent 
elements, that is elements with {0} spectrum, has an interior point a, then all 
elements are quasinilpotent (because p(a + X(x — a)) = 0 for each x). 

In the next three sections, we will describe some typical results about 
spectral continuity, commutativity, and spectral finiteness, which are the three 
major areas of spectral theory and its applications discussed by Aupetit. 

1. Spectral continuity. The earliest results on spectral continuity are due to 
Newburgh [14] (see [AUP, pp. 6-9]). Newburgh shows that the spectrum is 
upper semicontinuous in the sense that given am A and e > 0, there is a 8 > 0 
for which || x — a 11 < 8 implies that dist(A, Sp(a)) < e for all X in Sp(x). When 
Sp(fl) is totally disconnected he also proves the reverse inequality 
dist(/t, Sp(x)) < c for all //, in Sp(a); so that in that case the Hausdorff distance 
A(Sp(û), Sp(x)) < e; and hence Sp(x) is continuous at a in the Hausdorff 
metric. Conway and Morrel improve this result slightly [4, Proposition 2.4, 
p. 57] as a step in their determination of necessary and sufficient conditions for 
spectral continuity at a point in the algebra of operators on Hubert space (see 
also [13]). 

Newburgh also shows that if we restrict Sp(x) to the set of elements 
commuting with a, then this restriction is continuous at a (cf. [15, Theorem 
1.6.17, p. 36]). It is easy to see from the Gelfand transformation that on a 
commutative Banach algebra the spectrum is uniformly continuous, but it is 
still not clear on which Banach algebras the spectrum is continuous. On the 
one hand, if B is commutative then the spectrum is continuous on a class of 
algebras which include all Banach subalgebras of the algebra of n X n matrices 
with entries in B [AUP, pp. 138-140]. But on the other hand there are many 
examples of spectacularly discontinuous spectra [AUP, pp. 34-41]. 

Since spectral continuity is so rare in a noncommutative Banach algebra, 
several people have tried to find conditions on a subset N which guarantee that 
SpA(x) is continuous when restricted to N. Again the first such result is due to 
Newburgh, who finds hypotheses on N sufficiently weak [14, p. 169] so that 
they are satisfied when N is the set of normal elements in a C*-algebra [14, 
Corollary 2, p. 170]. In the mid 1970s several people extended Newburgh's 
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result to prove uniform continuity. Aupetit weakened the hypothesis somewhat 
more in order, for instance, to prove uniform continuity of the spectrum on the 
normal elements of a symmetric star algebra [AUP, pp. 142-143]. 

All the above continuity results use only elementary methods which have 
been available for decades. Using subharmonic functions Aupetit proves what 
he calls an "almost-continuity" theorem [AUP, Theorem 1, p. 32] whose major 
consequence is 

THEOREM [AUP, COROLLARY 1, p. 33]. Suppose that f(X) is an analytic 
function from a domain D of complex numbers to a Banach algebra A and that 
E Q D is "nonthin" at X0 in E (1 D. If Sp( f(X)) does not disconnect the plane, 
then there is a sequence {Xn} in E with limit X0for which Sp( f(Xn)) approaches 
Sp f(X0) in the Hausdorff metric. 

As an application (cf. [AUP, p. 34]), suppose that Sp(a + Xb) is real for 
0 < A < 1; then Sp(fl) is real. 

2. Commutativity. The earliest commutativity results (see [AUP, pp. 42-47]), 
beginning with a fundamental 1967 paper of Le Page [12], mostly give norm 
conditions which imply commutativity. For instance one of Le Page's results 
[12, Proposition 2], [AUP, Theorem 1, p. 42] is that if there is a k > 0 for which 
II ab I! < k || ba II for all a and bin A, then A is commutative. In the mid 1970s, 
results which characterize commutativity in terms of spectral properties appear 
simultaneously in the works of Aupetit and of Zemânek and his collaborators. 
Since the spectrum of a in A is the same as the spectrum of its coset in 
A/Rad A [AUP, Lemma 2, p. 2] such results can only describe commutativity 
modulo the Jacobson radical of A. Of course, many of the Banach algebras 
that arise in applications, like operator algebras or group algebras, have {0} 
radical; so that one actually characterizes commutativity in these cases. In his 
book Aupetit gives 13 properties equivalent to commutativity modulo the 
radical [AUP, Theorem 2, pp. 48-49]. From this list we have chosen three, 
which are also given by Zemânek [20, Theorem 2.1, p. 10]. 

THEOREM. Each of the following conditions on A is equivalent to A /Rad A 
being commutative: 

(1) p(x + y) < c(p(x) + p(y))for some c > 0. 
(2) p(xy) < mp(x)p(y) for some m > 0. 
(3) p(x) is uniformly continuous on A. 

In the most up-to-date versions of the proof of the above theorem, the main 
step is the following lemma [20, Theorem 1.2, p. 6], [AUP, p. 52]. 

LEMMA. If sup p(a — u~xau) is finite, then a is in the center of A modulo its 
radical. 

The earliest proofs of the lemma use the fact that if g(X) = (eXbae~Xb — a)/X 
then p(g(X)) is subharmonic (see [AUP, p. 49]), in much the same way that Le 
Page's proofs [10] use the fact that g(X) is analytic. The proof of the lemma is 
thus reduced to a result of Le Page [10, Proposition 6, p. 237], [AUP, Corollary 
8, p. 46], which is based on the Jacobson-Rickart-Yood density theorem. More 
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recently Zemânek gave a beautifully simple purely algebraic proof [20, p. 6], 
[AUP, p. 52] of the lemma based on Allan Sinclair's extension on the density 
theorem [16, Theorem 6.7, p. 36], [AUP, Corollary 1, p. 160]. For most of the 
other characterizations of commutativity in [AUP, Theorem 2, pp. 48-49], 
subharmonicity seems to be essential to the proof, because those characteriza
tions only give conditions valid in a suitable open set in A instead of in all of 
A. 

In many ways the lemma is more interesting than the theorem because it 
gives a way to find central elements of a noncommutative algebra [AUP, 
Corollary 10, p. 51]. For algebras like the Calkin algebra or the algebra of 
operators on a Banach space which have trivial centers, one obtains striking 
characterizations of the scalar elements [20, p. 8]. 

3. Finite spectra. A number of recent papers have given conditions which 
imply that a Banach algebra or module is finite dimensional (see [AUP, 
pp. 69-77, 88-91] and the references he cites). These results usually use 
Kaplansky's finite spectrum theorem [11, Lemma 7, p. 376], which states that a 
Banach algebra in which every element has finite spectrum is finite dimen
sional modulo its radical. The theorem is often used in tandem with the 
reviewer's result that a nil Banach algebra is nilpotent [7] [AUP, Lemma 1, 
p. 88]. Aupetit is able to generalize Kaplansky's theorem by assuming only that 
the algebra has an open set of elements with finite spectrum [AUP, Theorem 1, 
p. 70], or, for a star algebra, that the Hermitian elements have a relatively open 
set of elements with finite spectrum [AUP, Theorem 2, p. 71], 

Aupetit's extensions of Kaplansky's theorem are easy consequences of the 
following result, which is far and away the deepest and most substantial 
application of subharmonic functions to Banach algebras. The reader who 
works through the proof of the theorem [AUP, Theorem 1, p. 66] and of the 
lemmas it invokes will obtain a real appreciation of the power of subharmonic 
methods in Banach algebras. 

THEOREM. Suppose that f(X) is an analytic function from a domain of complex 
numbers D to a Banach algebra. If the set of X for which Sp(/(X)) is finite has 
nonzero outer capacity, then there is a positive integer n for which Sp(/(A)) has 
no more than n points for all X in D and has exactly n points except on a set with 
no limit points in D. 

Aupetit obtains his generalizations of Kaplansky's finite spectrum by apply
ing the theorem just stated to f(X) - a + X(x - a) where a is fixed and 
chosen appropriately and x is arbitrary. 

By applying the lemma stated in the previous section, Zemânek obtains 
several interesting characterizations of the radical of a Banach algebra [20, 
pp. 16-17], [AUP, pp. 22-23]. For instance, if a H- q is quasinilpotent for all 
quasinilpotent q, then a belongs to the radical. In a similar way Aupetit uses 
the theorem stated in this section to show that if a + ƒ has finite spectrum 
whenever ƒ has finite spectrum, then a is algebraic modulo the radical. These 
results have striking applications to the algebra of operators on a Banach space 
[19, Corollary 2, p. 4], [AUP, Corollary 7, p. 99] and to the Calkin algebra in 
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Hubert space. For instance if the Hilbert space operator T is not polynomially 
compact, then there is an operator U with finite essential spectrum for which 
T' + U has infinite essential spectrum. 

4. Concluding remarks. In this review we have emphasized a few highlights of 
the recent developments in spectral theory in general Banach algebras. Aupetit 
also discusses interesting recent applications of subharmonic functions and of 
spectral theory to special classes of algebras like function algebras, group 
algebras, and C*-algebras. Particularly elegant is his treatment of Banach 
algebras with involution [AUP, pp. 107-130]. The most important results he 
discusses were obtained in the late 1960s, in time to be discussed in [3]. But 
Aupetit's treatment is somewhat more general and up to date and is completely 
independent of the theory of numerical ranges in Banach algebras. Among the 
interesting topics on general Banach algebras which we have not discussed is 
Robin Harte's exponential spectrum [8], [AUP, pp. 5-6] which generalizes the 
Weyl spectrum in the Calkin algebra to arbitrary Banach algebras, and 
Aupetit's extension of the Gleason-Kahane-Zelasko theorem from scalar-
valued functions to matrix-valued functions [AUP, Theorem 5, p. 29]. 

An unusual feature of the development Aupetit chronicles is how often what 
later turn out to be key results were forgotten. Newburgh's theorems about 
spectral continuity at elements with totally disconnected spectra and on the set 
of normal elements [14] are described without proof by Rickart [15, p. 37] but 
they nevertheless seem to have been virtually unknown in the 1960s and early 
1970s. Kaplansky's finite spectrum theorem [11] was so far forgotten that it 
was discovered all over again by two very good mathematicians when it was 
needed in the 1970s. Vesentini's 1968 proof of the subharmonicity of the 
spectral radius [18] seemed too special to be included in Bonsall and Duncan 
[3], and only became known because of Aupetit's spectacular applications of it 
in the mid 1970s. Sinclair's density theorem, which he published for the first 
time in his lecture notes [16] and which was shortly thereafter applied by 
Zemânek [20], actually was in Sinclair's Ph.D. thesis nearly ten years earlier. 
Even celebrated theorems like Johnson's uniqueness of norm theorem [10], 
[AUP, Theorems 4 and 5, pp. 161-162] often wait years before they are really 
used in applications. It appears that, in Banach algebra theory at least, elegant 
results of great generality eventually find important applications, provided 
they are not forgotten. 

Aupetit's book has both the strengths and weaknesses of a set of lecture 
notes as distinct from a polished treatise. It often repeats results from papers 
with little change and no references to similar results elsewhere in the book. 
But the book is very thorough and up to date. If it were being written today, it 
would surely discuss Aupetit's subharmonic function proof of Johnson's 
uniqueness of norm theorem in [2], and Aupetit's joint work with Zemânek on 
rates of continuity [1]; but it is hard to think of other results which appeared 
too late to be included. 

Aupetit is very thorough in tracing the history of results and in assigning 
credit, but the book very much emphasizes his personal point of view. For an 
emphasis on algebraic arguments one should consult Zemânek's beautiful 
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survey [20]; and for another discussion of the basic theory of subharmonic 
functions in Banach algebras one can consult Istrajescu [9, Chapter 14], who 
discovered the log-subharmonicity of the spectral radius almost simultaneously 
with Vesentini. 

Since Aupetit's book has an appendix which contains the results he uses 
about subharmonic functions, it is essentially self-contained for anyone who 
knows the most basic facts about spectral theory and ideal theory in Banach 
algebra. Even those results are sketched rapidly in an appendix and in the first 
few pages of Chapter 1, though the reader is referred to [3 or 15] for proofs of 
the results connected with the Jacobson radical, which Aupetit uses in the 
discussion of commutativity and finiteness of spectra. Nonetheless a reader 
interested in a specific algebra or class of algebras with {0} radical, such as the 
Calkin algebra or group algebras, could probably learn the results he is 
interested in with little need to ready anything not in Aupetit. Such a reader 
will find many new results which will be interesting and valuable even for such 
specific algebras. 
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