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fascinating old history of mathematics in the nineteenth century, had cited 
Cauchy's lectures as evidence of the "unusually high requirements on the 
purely mathematical side that were set as a basis" for the practical instruction 
in the École Polytechnique. But this turns out not to be true. In fact, there were 
complaints about Cauchy's teaching—and my, but they do sound familiar! 
Five lectures on the generalities of integration? "That might be all right in the 
Faculty of Sciences," said a physicist, "but it is not appropriate in the École 
Polytechnique, where the students are pressed for time." By 1825, when 
Cauchy repeated the course on differential equations, the Ministry of Educa
tion had been persuaded to decree officially that lecturers should stick to the 
syllabus officially established. Officially, Cauchy agreed: the minutes for 
November, 1825 say "M. Cauchy announces that, to conform to the wishes of 
the Council, he will no longer strive, as he has up to now, to give perfectly 
rigorous proofs." But in fact he did not change. The minutes a year later record 
that "M. Cauchy has presented only lecture notes that could not satisfy the 
commission, and thus far it has been impossible to make him.. .carry out the 
decision of the Minister." In other words, his notes that year were not 
considered fit to print. 

Cauchy was always a man of prickly principles. Loyal to the old Bourbon 
regime, he abandoned his positions rather than swear an oath of allegiance to 
Louis Philippe after the 1830 revolution. (In 1838 he resumed activity in the 
Académie, which was exempt, but still refused all positions requiring the oath.) 
He had even less liking for the republican government set up in 1848, but he 
immediately resumed his position at the Sorbonne—because an oath was no 
longer required. Personal details like this are usually mere diversions in the 
history of mathematics, but in this particular case they seem to be important. 
As several authors (including Grabiner) have pointed out, Cauchy was not the 
only mathematician to lecture on calculus at the École Polytechnique. Ampère, 
Poisson, and others did so at about the same time. But Cauchy was stubborn. 
He would no more choose to give a false proof than to swear a false oath; he 
would deliver his lectures his way. And it seems that his stubbornness as well as 
his genius helped to give us the Cours d 'analyse. 

WILLIAM C. WATERHOUSE 

BULLETIN (New Seriei) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 7, Number 3, November 1982 
© 1982 American Mathematical Society 
0273-0979/82/0000-0603/101.50 

Numerical methods for stiff equations and singular perturbation problems, by 
Willard L. Miranker, Mathematics and its Applications, vol. 5, D. Reidel 
Publishing Company, Dordrecht, Holland; Boston, U.S.A.; London, Eng
land, 1981, xiii + 202 pp., $29.95. 

Numerical analysis and perturbation theory are two principal approaches to 
the problems of applied mathematics. It is a little surprising that there has not 
been more interaction between these approaches. In my opinion this is because 
the goals and the problem classes are rather different. At the risk of gross 
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over-simplification, I would say that numerical analysis tries to provide 
quantitative information about a particular problem, whereas perturbation 
theory tries to gain insight about the qualitative behavior of a family of 
problems and only semiquantitative information about any particular member 
of the family. Numerical methods are intended for broad classes of problems 
and are intended to minimize demands upon the problem solver. Perturbation 
and asymptotic methods treat comparatively restricted classes of problems and 
require the problem solver to have some understanding of the behavior of the 
solutions expected. To the extent that the goals are different, the approaches 
do not overlap. When they do overlap, they tend to be complementary. 
Perturbation and asymptotic methods tend to be most effective numerically 
precisely in those limit situations when general purpose numerical methods 
perform badly or fail entirely. A simple example is the numerical solution of 
the initial value problem for a nonstiff set of ordinary differential equations. 
When the defining functions are smooth, this is a routine task for any of the 
better pieces of mathematical software, and the problem solver hardly needs to 
get involved. A singularity changes the situation dramatically. The problem 
solver really must sort out what is happening near the singularity and then 
approximate the solution there by special methods such as asymptotics. 

The book is mainly devoted to the initial value problem for a system of 
ordinary differential equations. Some other topics are taken up, such as 
recurrences, boundary value problems, and initial value problems for partial 
differential equations. Although interesting, indeed I especially enjoyed the 
section on boundary value problems, they were distracting to me, and I would 
have preferred that they be omitted. More specifically, the book is devoted to 
"stiff initial value problems. There is some controversy as to just what 
stiffness is, but the main point is that both the theory and practice of classical 
numerical methods are completely inadequate for some classes of problems of 
great economic value. These problems are often of kinds traditionally investi
gated in perturbation theory. For this reason there is currently great interest in 
the application of perturbation theory to the numerical solution of stiff 
problems and it is timely that the author should bring his expertise in 
perturbation theory to bear on them. As a numerical analyst, this reviewer 
found the possibilities raised in the monograph to be very interesting. 

An important chapter is devoted to the numerical realization of inner and 
outer expansions for the solution of problems of boundary layer type. At 
present singularly perturbed initial value problems are being used by many 
researchers to gain insight about the characteristics of stiff problems and to 
discard plausible numerical methods that cannot be satisfactory in the general
ity desired. The problems and methods of singular perturbation theory are of 
unquestionable value in this area right now, and they hold great promise for 
the future. On the other hand, the straightforward realization of singular 
perturbation methods does not appear to compete with numerical methods 
now available for the stiff problems of boundary layer type treated in this 
chapter. 

Another important chapter is devoted to the highly oscillatory problem, and 
here the perturbation theorists came to a deeper understanding of fundamental 
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issues far earlier than the numerical analysts. For example, only recently have 
numerical analysts begun to appreciate that their customary pointwise error 
measures are inappropriate for problems with highly oscillatory solutions. In 
perturbation theory there are more natural definitions of a solution, and there 
are approaches with real promise for these extremely difficult problems. It is to 
be hoped that Miranker's seminal work can be generalized to less special 
problems, so that new software tools can be based on the ideas. 

The author states that most of his material is drawn from the recent 
literature and that his treatment varies from formal to informal. This is 
accurate. The monograph might be described as a collection of papers by the 
author and his coworkers, supplemented with the necessary background 
material. More attention has been given to background material in numerical 
methods than in perturbation theory. Some mathematical sophistication is 
necessary for the more important sections of the book. 

This is a stimulating book on the application of the methods of singular 
perturbation theory to the numerical solution of stiff ordinary differential 
equations. The numerical examples merely demonstrate feasibility, but numeri
cal analysts should be reading this book for the possibilities of the approach, 
rather than for algorithms they can immediately implement. It is to be hoped 
that Miranker's success will encourage others to further develop the ideas to 
the point that they will provide new and powerful numerical algorithms.1 

L. F. SHAMPINE 

lrThis work was performed at Sandia National Laboratories and supported by the U.S. 
Department of Energy under contract number DE-AC04-76DP00789. 
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The tragicomical history of thermodynamics 1822-1854, by C. Truesdell, Studies 
in the History of Mathematics and Physical Sciences, Volume 4, Springer-
Verlag, New York, Heidelberg and Berlin, 1980, xiii + 372 pp., $48.00. 

1. This volume carries the word 'history' in its title, and is published in a 
series of historical studies. The reader is thus doubly invited to expect an 
historical account, in which, therefore, past events and their contexts are 
described. 

TruesdelTs play is divided into five acts and an epilogue, with two named 
'distracting interludes' (pp. 139-148, pp. 219-276) and an extra Act V to be 
played as an 'antiplot in a dark and empty theatre' (pp. 277-304). The action 
takes place mostly in the period between Fourier (1822) and Reech (1854), 
with major roles played also by Carnot, Kelvin, Clausius, Joule and Rankine, 
and minor parts and noises off coming from various other figures. Laplace, 
Biot, and Poisson perform a Prologue (pp. 29-46), without the help on p. 31 of 
Laplace [1803]. 


