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Measurable cardinals have been around for a long time. Stanislaw Ulam [U] 
invented them in his salad days in Lwów, and they would emerge from time to 
time under various combinatorial guises. But they seemed at best a curiosity in 
a sideshow to the creative achievements of Kurt Gödel in mathematical logic. 
The driving life force in set theory at the time was the Continuum Problem, 
and Gödel [Gö] in 1938 established the consistency of Cantor's Continuum 
Hypothesis and also the Axiom of Choice by constructing the universe L of 
constructible sets. The reasons are not altogether clear for the prolonged lull 
that ensued, but at least during this period, the structural approach to 
restrictions of models of set theory initiated by Gödel's beautiful construction 
was systematized in the study of inner models (Sheperdson) and relative 
constructibility (Levy). Then in 1963, the analyst Paul Cohen [C] established 
the independence of the Continuum Hypothesis and the Axiom of Choice. In 
his Forcing Method, the brilliant carpetbagger happened upon a remarkably 
fecund method for producing extensions of models of set theory. There was no 
lull this time, as fine mathematicians like Robert Solovay quickly perceived the 
possibilities abounding, and within a few years the general theory of Forcing 
was codified, and a cornucopia of relative consistency results were being 
fashioned. 

This mainstream of new vitality in set theory was fed by another develop
ment, which is traced in more detail to establish the context for the book under 
review. In 1960, Dana Scott [Sc] proved that if there is a measurable cardinal, 
then the universe V of all sets is strictly larger than Gödel's constructible 
universe L, i.e. V ¥= L. The usefulness of the ultraproduct construction in 
model theory was just beginning to be understood at the time when Scott 
struck on the idea of taking an ultrapower of the entire universe V. Not only 
did this simple but penetrating result firmly establish that new axioms can 
decide outstanding questions about the universe, but it quickly led to the 
intrinsic characterization of measurable cardinals as critical points (least 
ordinal moved) of elementary embeddings j : V -> M of the universe V into 
some inner model M. If the work of Gödel and others had established a sacred 
tradition in logical syntax and formal structure, then Scott's result rescued 
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measurable cardinals from the profane, for over the algebraic considerations of 
the complementary techniques of forcing and inner models was superposed the 
categorical imperative of embeddings. 

Striking results exploiting model-theoretic techniques quickly followed. 
Frederick Rowbottom [R] established that a simple combinatorial property of 
measurable cardinals already implies that there are only countably many reals 
in L. By 1965, Jack Silver [Si2] (see also Solovay [So]) distilled the essence of 
this transcendence over L by isolating a set of integers called 0 # . 0 # codes all 
the sentences true of L, but much more than that, it is a veritable blueprint 
with complete genetic information for the uniform generation of L. If Gödel's 
breakthrough in the formulation of L over type theory was to generate over the 
class of ordinals as impredicatively given, the presence of 0 # amounts to a 
trivial crystalization of this process. The story of 0 # is a singular example of 
the interplay of syntax and structure in the isolation of a new axiomatic 
principle. 

Another outgrowth of Scott's result was the investigation of iterated ultra-
powers. Haim Gaifman [Ga] initiated this study and provided a general theory 
of "self-extension" operators, but in the context of measurability it was 
Kenneth Kunen [K] who, by 1968, had refined Gaifman's technique to provide 
an elegant and powerful method for reproving Silver's results as well as 
deriving structure theorems about inner models of measurability. One of his 
insights was that ultrapowers can be taken even when the corresponding 
ultrafilter is not in the model, and this, for example, led to the intrinsic 
characterization of 0 # : it exists just in case there is an elementary embedding 

j : L -* L. Turning to inner models of measur ability, if U is an ultrafilter 
attesting to the measurability of a cardinal /c, L[U] is the smallest inner model 
in which K remains measurable. Silver [Sil] had established that L[U] has 
coarse structural properties like L which made it worth investigating further, 
and Kunen got to the heart of the matter by demonstrating that the models 
L[U] depend only on K (not U) and that all such models are iterated 
ultrapowers one to the next. Thus, iterated ultrapowers became an intrinsic 
feature of measurability. 

Around this time, there was growing interest in the so-called Singular 
Cardinals Problem: for singular cardinals K, what constraints are imposed on 
the size of 2K by the sizes of 2a for a < /c? This seemed to be just a difficult 
Forcing problem until Silver [Si3], in the summer of 1974, demonstrated that 
there were definite constraints when K had uncountable cofinality. Silver's 
argument was simple, as Scott's was, but it revised the collective intuition of set 
theorists and spurred new activity. This culminated in Ronald Jensen's Cover
ing Theorem [DeJ], easily the most significant result of the 1970s in set theory: 
0 # does not exist only when F has the covering property with respect to L, i.e., 
whenever X is an uncountable set of ordinals, there is a Y E L such that 
X QY and 1X1=171. This is a deep structural statement about the proximity 
of V to L, and has as a simple consequence that in the absence of 0 # , for any 
singular K, 2K must always be the least possible cardinal allowed by classical 
cardinal arithmetic. That such an ostensibly minimal hypothesis as the viola
tion of the covering property could already lead to 0 # was quite revelatory. 
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It was against this potent backdrop that the Core Model K was conceived. 
The speculation that several of the beautiful results about measurable cardinals 
arose out of proposals, some modest others not, for demonstrating the outright 
inconsistency of measurable cardinals is particularly pertinent for the Core 
Model. Measurable cardinals have proved very resilient, and even though they 
may yet be pursued by a dogged few, there is a general concensus that they do 
not lead to inconsistency. Whatever the initial incentives, the formulation of 
the Core Model is a considerable achievement which synthesizes much that 
came before. It is a definable inner model in which there is no measurable 
cardinal, yet is rigid with respect to the process of adjoining local endomorphic 
embeddings (or rather, their characterizing coding sets, the " sharps"). It allows 
an extension of the Covering Theorem to the consistency strength of measura-
bility, and it provides a fully adequate structural understanding of the gap 
between 0 # and measurability. The Core Model is the result of a close 
collaboration between Anthony Dodd and Ronald Jensen. Beyond their joint 
articles [DoJl, DoJ2, DoJ3], the book under review is the full exposition on the 
subject by Dodd. It is a formidable work, well-organized and self-contained, 
with the intricate details painstakingly written out. 

The extended introduction provides a panoramic overview which manages to 
touch upon many of the delicate but critical points. It is very well written and 
well worth reading. The reader is gently eased into the text and is handed a 
helpful guide for the rigors ahead. 

Part I deals with fine structure. Fine structure theory, the stuff of projecta, 
the remarkable 2rt uniformization theorems and master codes, is the invention 
of Jensen [J] in his deep analysis of L. The author develops a generalized 
version for constructibihty relative to a predicate, introducing the concepts of 
acceptability (a closure condition prefigured in Silver's proof [Sil] of the GCH 
in L[U]) and soundness (that the Skolem hull of the projectum plus the coding 
parameter is the full structure) necessary to effect a fine structure analysis. This 
part is a veritable paean to formalism as well as a testament to the author's 
tenacity. In strict adherence to the principle of parsimony, a minimal base set 
theory is adopted to carry out a completely syntactic study, and further axioms 
are adjoined only when needed. In doing this, the author anticipates a criticism 
which should nonetheless be made: It does not seem necessary to pursue such 
an abstract course when pragmatic assumptions, such as the well-foundedness 
of structures, would suffice for the text and probably all future work. There 
may be no substitute for honest toil, but there is no need for gratuitous 
suffering. One gets a queasy feeling when so many details are presented, and 
some are seemingly left out, as if something may be rotten at the core. (But 
perhaps I am not the one to judge, since I get a similar feeling whenever I 
ponder the details of Godel's Second Theorem!) 

Part II deals with iterated ultrapowers. The elegant theory of Kunen [K], 
especially the indiscernibility of critical points and the iterability criteria, is 
carefully tailored to a restricted context. Here are presented the basic modules 
called iter able premice, local structures J^ which satisfy "U is a normal 
ultrafilter over K " for some K < a and yield well-founded iterated ultrapowers. 
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Part III synthesizes the two previous parts, developing the remarkable 
connection between fine structure and iterated ultrapowers first enunciated in 
some unpublished work of Solovay: Suppose that TV = J^ is an iterable 
premouse with measurable /c. Let pn

N be the 2M-projectum of TV, and X the 
Skolem hull of pl

N together with a parameter defining some offending set 
z Q pl

N which is 2j over TV but not a member of TV. If TT: X -* M is the 
Mostowski collapse of X, then M is an iterable premouse, and if 7T(K) < /c, we 
can take its Kth iterated ultrapower MK. MK turns out to be Jp for some ft. 
However, if pl

N < K, then a = /?, roughly since that set z is below critical points 
and, hence, preserved, yet is not supposed to be a member of TV. Thus, when 
pl

N < K, N is an iterated ultrapower of M, and M is called the core of TV. This is 
perhaps the ultimate manifestation of the close interaction between definability 
and iterated ultrapowers, first educed by Kunen in his work on L[U]. 

With fine structure we can generalize this to 2„ for n > 1. Notice first of all 
that if pn

N > K for every «, then every TV-definable subset of K is in TV. To add 
such TV indiscriminately to the Core Model amounts to introducing measurable 
cardinals, so it is avoided. So, assume there is some crossing of K, p^+1 < K < pn

N. 
We can consider 7p^, where A is a 2 „-master code for TV, find its core, and 
extend embeddings back up to the level of TV. This whole analysis involves 
considerable complications rigorously carried out by the author in the text. 
When iterations of these extended embeddings at the level of TV are all 
well-founded, TV is called a mouse. Notice that the very formulation of mice 
essentially involves fine structure. Part III concludes with an extended study of 
mice and points out that 0 # exists /ƒƒ there is an iterable premouse ///"there is a 
mouse TV with pl

N — K (where K is the measurable cardinal of TV). 
In Part IV we are at last treated to our first glimpse of the Core Model K. 

The toils of the ascent have left the formulation very simple: K is the union of 
L together with all mice. The author verifies that K models ZFC + GCH, and 
notes its dependence on the assumptions made in the universe: if V — L, then 
K = L; if 0 # exists but there is no / . L[0#] -* L[0#], then K = L[0#], etc.; at 
the other end, if there is an inner model with a measurable cardinal, then K is 
the intersection of all its iterated ultrapowers. Nonetheless, the natural ramifi
cations of K look rather murky when compared to the La-ramification of L, so 
the author sharpens the focus with his "sharplike" mice, and the demonstra
tion that if there is a nontrivial j : K -> K, then there is an inner model with a 
measurable cardinal. Part IV is brought to an end with the pleasing results 
about K being the natural inner model for Ramsey cardinals and, in general, 
the Erdös cardinals. 

The primary motivation for the formulation of the Core Model was to 
extend Jensen's Covering Theorem. Part V is devoted to generalizations of 
Covering of which the most accessible is: If there is no inner model with a 
measurable cardinal, then V has the covering property with respect to K, i.e. 
whenever X is an uncountable set of ordinals, there is a Y E K such that 
X Q Y and | ^ | = | Y\. A necessarily more complicated version is also derived 
for L[U]. After the relative calm of the previous part, the book amplifies to its 
highest level of structural complexity, as the elements of Jensen's fine structure 
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proof for L are again trotted out. In a substantially more Byzantine guise, we 
behold the essential idea of the upward extension of embeddings, as well as the 
" vicious" sequences. Probably, the use of these sequences will in the long run 
be considered a red herring, given Silver's simpler proof of Covering, which 
needs no fine structure and uses a more elegant device to take care of 
purported ill-foundedness (see Holzman [H]). The author is well aware of the 
Silver proof, but persists with the exposition of the original road to discovery, 
averring that the fine structure of K is of intrinsic interest and opining that the 
techniques involved might be crucial in future work. 

This brings to mind the whole question of the role of fine structure. The 
author addresses himself to this issue at some length in the introduction and 
elsewhere. Certainly, K can be fully developed without fine structure (defined 
as the union of L together with all iterable premice N with measurable K such 
that pl

N < K), and arguably, much of the fine structure results deal with its own 
paraphernalia. All the major results like Covering can be established with not 
much more than Condensation and 2„-substructures, and proofs employing 
only such elementary techniques are much more accessible to a wide audience. 
But undeniably, this fine research was first carried out with fine structure, and 
there is a long series of new principles and results first formulated through the 
fine structural analysis of constructibility. Perhaps we can best say that the 
road to discovery is inseparable from the discoverers, that the insights and 
directions of research of Jensen and his collaborators have been just as crucial 
as the formalism of fine structure which came most naturally to them. The 
author clearly feels that the information provided by fine structure is very 
important, and the book is just as much an exposition of its techniques as the 
results it establishes. 

The concluding Part VI is open-ended and speculative, sketching possible 
generalizations of K. In 1973, Mitchell [Ml] had investigated strong forms of 
measurability, now called measurable cardinals of high Mitchell order, provid
ing internal definitions in terms of coherent sequences U of ultrafilters and 
estabhshing that the corresponding inner models L[U] share many properties 
with inner models of just measurability. After the appearance of K, Mitchell 
[M2] quickly developed corresponding Core Models K[U] for coherent se
quences U and even established some weak versions of Covering. The efficacy 
of Mitchell's methods is evidenced by his very recent clarification of the 
Singular Cardinals Problem: he has relative consistency, almost equicon-
sistency, results concerning various forms of singular strong limit cardinals K 
such that 2" > K+ , all of which hover around the existence of measurable 
cardinals K of Mitchell order /c, K+ , and K+ + . This considerably resolves the 
author's speculations concerning Covering and powers of singular cardinals, 
but somewhat to his vindication, Mitchell too first used fine structure and has 
not been able to eliminate it altogether. 

This impressive work of Mitchell suggests that the limits of Core Model 
technology may have been reached. Much less is known about possible inner 
models for large cardinals. Mitchell [M3] developed his hypermeasurable cardi
nals for this ascent, and the author presents an equivalent treatment in terms of 
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his extenders and strong cardinals. Strong cardinals are a weak version of the 
well-known supercompact cardinals, and the author even speculates on super-
strong cardinals, which are the analogously weak versions of the huge cardinals. 
Much of the overlay of complexity throughout the book is intended to set the 
stage for the fine structure theory of extenders. Sometimes this complexity is 
apparently only notational, as in the case of the author's reformulation of 
Solovay's already clear method for extracting 2 „-indiscernables from 2 rindis-
cernibles (pp. 56-58). In fact, remarks peppered throughout the book generate 
a definite anticipatory air, as we become aware of the author's predilection for 
presenting general frameworks whenever possible. So, it is disappointing that 
we are not shown the details of how these best-laid plans are brought to bear 
on the development of the fine structure of extenders. But, this is presumably 
the subject of a sequel. 

We have come a long way from those halcyon days in the coffee houses of 
Lwów. The Core Model will not be the ultimate exposition on its results, but 
everything is there, suffused with the fine structure intuition of one of its 
primary developers. The canon has now been firmly established for future 
revisionism, and it is up to detractors of formalism and fine structure to 
provide the counterpoint. 
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Falstaff, to Prince Hal: "Oh, thou hast damnable iteration, 
and art indeed able to corrupt a saint." 

Henry IV, Part 1: Act 1, Scene 2 

As the quotation shows, iteration, in the general sense of repetition of an act, 
has been around a long time. Even as a mathematical discipline devoted to the 
study of the repeated composition of functions with themselves, iteration 
theory is rather old: it can be said to have begun with the activities of the 
Cambridge Analytical Society (Babbage, Herschel, Peacock) in the 1810s, and 
more particularly with the publication by Charles Babbage of his two-part 
Essay towards the calculus of functions in the Philosophical Transactions of the 
Royal Society in 1815 and 1816. 

In that essay, as elsewhere, Babbage wrote \pn for the nih iterate of the 
function *//, and posed the problem" Required the solution of 

( 1 ) l//nJC = X • • • " . 

He observed that if \p} is a solution of (1) and \p2 is defined by 

(2) ^ = r ' ^ i o A 
where ƒ is any invertible function whose range includes the domain and range 
of \p{, then \p2 is also a solution of (1). Thus Babbage introduced the equiva
lence relation of conjugacy of functions. Conjugacy is a fundamental notion in 
iteration theory, for it is clear from (2) that all information about the iterative 
behavior of a function can be obtained from the corresponding behavior of 
any conjugate function. For example, for 0 < X < 2, let gx be the function 
defined on [0,1] by 

gx(x) = 2Xx(\ - x). 

Then gx is conjugate to the function hx defined on [-À, X] by 

hx(x) = x2 - X(X - 1) 


