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Falstaff, to Prince Hal: "Oh, thou hast damnable iteration, 
and art indeed able to corrupt a saint." 

Henry IV, Part 1: Act 1, Scene 2 

As the quotation shows, iteration, in the general sense of repetition of an act, 
has been around a long time. Even as a mathematical discipline devoted to the 
study of the repeated composition of functions with themselves, iteration 
theory is rather old: it can be said to have begun with the activities of the 
Cambridge Analytical Society (Babbage, Herschel, Peacock) in the 1810s, and 
more particularly with the publication by Charles Babbage of his two-part 
Essay towards the calculus of functions in the Philosophical Transactions of the 
Royal Society in 1815 and 1816. 

In that essay, as elsewhere, Babbage wrote \pn for the nih iterate of the 
function *//, and posed the problem" Required the solution of 

( 1 ) l//nJC = X • • • " . 

He observed that if \p} is a solution of (1) and \p2 is defined by 

(2) ^ = r ' ^ i o A 
where ƒ is any invertible function whose range includes the domain and range 
of \p{, then \p2 is also a solution of (1). Thus Babbage introduced the equiva
lence relation of conjugacy of functions. Conjugacy is a fundamental notion in 
iteration theory, for it is clear from (2) that all information about the iterative 
behavior of a function can be obtained from the corresponding behavior of 
any conjugate function. For example, for 0 < X < 2, let gx be the function 
defined on [0,1] by 

gx(x) = 2Xx(\ - x). 

Then gx is conjugate to the function hx defined on [-À, X] by 

hx(x) = x2 - X(X - 1) 
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via gx = ƒ_ 1 o hx o ƒ, where f(x) = A(l — 2x). The iterative behavior of gx, 
which has recently intrigued many people (see [7]) is thus completely de
termined by that of hx—and hx is rather easier to work with (e.g., see [5]). 

Since the days of Babbage, many mathematicians, from Abel [1], through 
Kuczma [6] to Zimmermann [11], have contributed to the development of 
iteration theory. Their efforts have been largely, though not exclusively, 
devoted, first, to generalizing Babbage's problem (1) to the problem of finding, 
for a given function g and integer «, f unctions ƒ such that 

(3) f = g, 

i.e., finding fractional iterates of arbitrary functions, rather than the identity 
function alone. Such fractional iterates may or may not exist; and if they do 
exist, there is generally no uniqueness, not even up to conjugacy. 

The fractional iteration equation (3) can in turn be generalized to the 
problem of defining arbitrary rational, real (or even complex) iterates of a 
given function g. This leads directly to the notion of an (abstract) dynamical 
system, i.e., a family { ƒ,} of functions such that 

(4) fs°f,=fs + l 

for all s, t in an index set that is closed under addition and may comprise, e.g., 
the nonnegative integers, the nonnegative rationals, the nonnegative reals, all 
integers, all rationals, or all reals. If the index set includes nonintegral 
numbers, and if /j = g for a given function g, then the functions ft can be 
regarded as generalized iterates of g, and we speak of g as being embeddable in 
such a family of generalized iterates. 

Embeddability in a family of generalized iterates, or even the existence of 
particular fractional iterates depends on the orbit structure of the given 
function. The notion of orbit needed here is that introduced by Kuratowski in 
a remark at the end of [10]: two points a, b in the union of the domain and 
range of a function ƒ are in the same /-orbit if there exist nonnegative integers 
m, n such that ƒ m(a) = fn(b). One example, therefore, of an/-orbit, would be 
a fixed-point of ƒ together with all points that ƒ ultimately sends into that 
fixed-point. Orbits have natural representations as directed graphs: see [4,8], 
and Chapter 1 of the book under review. There is a fundamental connection 
between the notions of orbit structure and conjugacy: two functions have 
isomorphic orbit structures if and only if the functions are conjugate. 

Orbits, as defined above, have no apparent connection with the ordinary 
"analytic" properties of functions—measurability, continuity, differentiability, 
and so on. Indeed, a very well-behaved function, say a real linear function, 
may be conjugate to, and thus have an orbit structure isomorphic to that of an 
extremely ill-behaved function, say a nonmeasurable function whose graph is 
dense in the plane. Nevertheless, connections do exist, the most spectacular 
one known to date being that contained in the now-celebrated theorem of 
Sharkovskiî [9]: if a continuous function that maps a real interval into itself 
admits a cycle of order m, then it also admits cycles of all orders n such that 
m < n in the ordering < defined by 

3 < 5 < 7 • • • < 3 - 2 < 5 - 2 < • • • < 3 • 22 < 5 • 22 < • • • < 2 3 < 2 2 < 2 < 1 . 
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(That this result remained virtually unknown in the West for over 10 years is 
evidence of the casual reading habits of many Western mathematicians. A 
lucid review of [9] appeared within a few months of the appearance of the 
paper itself, in the October 1964 Mathematical Reviews: MR 28 #3121.) 
Related to this is the "chaotic" behavior exhibited by certain continuous 
functions under iteration (see [7].) 

The emergence of such results is one of the two factors that have contributed 
to the recent upsurge of interest in the iteration of functions. The other factor 
is the proliferation of computing facilities that make it possible to iterate fairly 
complicated functions rapidly and display the results, e.g., in the form of 
scatter plots. Computer experiments have even led some people to the ex
pressed belief that the study of iteration is the key to unlocking the deepest 
secrets of the universe, or at any rate, the secret of turbulent behavior. Such 
extravagances are probably temporary; but the associated growth of interest in 
iteration theory is likely to persist. It is to serve this growth of interest that the 
book under review was written. 

As its title indicates, Professor Targonski's book is selective rather than 
comprehensive. Attention is focussed primarily on the subjects mentioned 
above: orbits (and limit sets of orbits), fractional iterates, embeddability of 
functions in families of generalized iterates, iteration of continuous functions, 
"chaos". Omitted subjects include iterative methods in numerical analysis, 
fixed-point theory (apart from the necessary rudiments), and, most regrettably, 
ergodic theory. 

The treatment of the topics considered is reminiscent of that in the old 
"Encyklopâdie" articles: an attempt is made to present all relevant results, 
with extensive references and cross-references, but without a great deal of 
discussion. Unlike the Encyklopâdie authors, however, Targonski often fur
nishes proofs. And his discussions, though brief, are consistently illuminating. 

Perhaps the most valuable feature of the book is the presentation of material 
that would otherwise be practically inaccessible. This applies to some of the 
work of the author himself and his students U. Burkart, R. Graw, and G. 
Zimmermann. While much of the work of this "Marburg school" has been 
published, some of it has not, or has only appeared in the form of doctoral 
dissertations [2,3,11]. This also applies to the material on the " Pilgerschritt" 
transformation in Chapter 4. The concept, and the rather odd name, is due to 
R. Liedl, who introduced it as a method for obtaining (in certain cases) an 
embedding of a function in a family of generalized iterates by successive 
approximations. The transformation is most ingenious; its definition is quite 
involved; and it is good to have a chapter devoted to it. Incidentally, the 
reason behind the name ("pilgrim's steps" or "pilgrim's walk") is given on 
p. 126. 

The author's writing style is clear and straightforward, but some items of 
notation may give readers trouble. In particular, the author uses a small A in 
definitions where many people would have =Def- or, after the words "we set", 
simply = . This is especially confusing in some places where a slightly larger A 
is used to designate something completely different. There is no list of special 
symbols, so the reader has to stop from time to time and do a bit of 
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deciphering. This is never difficult, but can be annoying. The terms "w-chain" 
and "co* + co-chain" are awkward and could be avoided by having some 
pictures. Indeed, the addition of pictures, particularly of orbits, would be very 
helpful. Considerably more attention could have been given to the notion of 
conjugacy. And one wishes that the book had been set in type, with justified 
margins, rather than being reproduced directly from typescript. 

But these cavils are minor. Professor Targonski has done a great service for 
all of us interested in iteration theory, and we can thank him by seeing to it 
that his book sells out as quickly as possible. 
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When I learned that G. G. Lorentz was writing a book on Birkhoff 
interpolation, I was hardly surprised. After all, no one has done more than 
Lorentz to develop and popularize this topic over the past fifteen years. On the 
other hand, I had the feehng that perhaps it was premature to commit the 
subject to book form. For despite considerable progress in understanding the 
basic problem, the general solution is not in sight and loose ends remain 
almost everywhere. It was thus with some misgivings that I agreed to write this 
review. When the copy of the book (coauthored by K. Jetter and S. D. 
Riemenschneider) arrived, however, I was pleased to find a good deal more 


