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As the implications of a mathematical structure become more deeply under­
stood, the number of applied problems that may be solved by that structure 
increases rapidly, often in some surprising directions. In The statistical analysis 
of counting processes, Martin Jacobson has given us an excellent account of just 
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such a phenomenon: the application of ideas and results from the general 
theory of stochastic processes, as developed primarily by the French school of 
probability, to the compelling and delicate applied statistical problem of the 
analysis of the lifetime data arising for the most part in clinical trials, 
epidemiological studies, and engineering reliability experiments. 

Jacobsen's monograph is far from being the first published account of how 
the abstract theory of stochastic processes, and the consequent results on 
martingales and stochastic integrals, can be used in analyzing lifetime data, or 
more generally, data that accrues over time in the form of observed counting 
processes. In fact, the literature on this topic is now quite extensive. He has, 
though, provided the first thorough "unified and essentially self-contained 
exposition" in this area. The need for such an account is clear, and a short 
account of the development of statistical methods in this fascinating area will 
help explain why. 

Evidently it is difficult to date the first systematic collection and analysis of 
lifetime data. Life tables summarizing mortality rates for populations have 
existed since at least the third century a.d., when a table attributed to Ulpian 
was constructed to assist in the distribution of annuities in Rome. Inference 
problems for life table models have been present in the mathematical literature 
for some time as well: In 1760 Daniel Bernoulli [4] used Halley's [12] life table 
for the city of Breslau (now Wroclaw, Poland) to illustrate a method for 
estimating the effect on mortality rates of the elimination of smallpox. Both 
Cardano [6] and Euler [9] also worked on what we might now call statistical 
problems associated with lifetables. Generally, though, sample sizes used in 
classical lifetables are large enough to prevent sampling variation, the key issue 
in any real inference problem, from presenting many serious difficulties. 

In the 1950s, however, life data began to accumulate in comparative experi­
ments in fields such as engineering reliability studies, epidemiological and 
medical follow-up studies, and laboratory pharmacological experiments. The 
most important measurement on each experimental unit in such situations was 
the time to a specified event, e.g., failure time of a machine component, the 
time to death for subjects undergoing an arteriosclerosis treatment regimen, or 
the time at which a treated tumor begins to shrink. Sample sizes in these 
experiments were necessarily small, and the inference questions surrounding 
these data sets had to be handled with care. In the statistical literature focused 
research began in earnest about this time into the "best" statistical methods 
for these problems. 

The common structure of the data in such problems can be described as 
follows. There is associated with each experimental unit a lifetime random 
variable T, a censoring time variable, Y, to be explained below, and a vector 
Z = (Z , , . . . ,Z ) of (possibly time dependent) covariates. The censoring time 
is that time measured from an appropriate origin, after which observation of 
the experimental unit is no longer possible. In applications, censoring times 
arise as, for instance, the planned termination time of a study, the loss of a 
subject during follow-up because of death from another disease, or the planned 
sacrifice of a laboratory animal to examine possible side effects of treatment. 
The data available for the ith subject in a lifetime experiment are thus 
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Xt = rnin(7], Yt) and Z,; the crucial inference problems, however, remain those 
associated with the distribution of Tt or the conditional distribution of Tt given 
Zt. Since the presence of censoring variables distinguishes statistical problems 
in this area from more traditional regression or analysis of covariance prob­
lems, data of this sort are also commonly referred to as censored data. 

The first attempts to develop methods for censored data and to understand 
the operating characteristics for those methods were for the most part in 
parametric settings of homogeneous samples (i.e. no covariates). Researchers 
assumed that the distribution of T was specified up to an unknown parameter 
0, and Fe(t) = P0(T < t) was usually estimated by likelihood methods. Two 
early important papers using this approach were those by Halperin [13] and 
Epstein and Sobel [8]. These parametric methods were quickly extended to 
situations in which data arose in comparative experiments involving two or 
more samples and, eventually, to some situations in which the hazard function, 

X (A - mi*) A0v'J ~~ Tï P / A I > 

depended on a covariate vector. Even in this parametric setting, however, the 
censoring variable made the subject unexpectedly messy. It was not always 
easy to defend proposed likelihood functions rigorously, nor was it clear that 
the asymptotic theory of likelihood based procedures was applicable. For 
lifetime distributions other than the exponential, even formulas based on 
heuristics were invariably cumbersome, and numerical methods were often 
needed to compute estimators. 

The parametric methods were usually applied to data arising in engineering 
settings where, for instance, extreme value theory might justify a particular 
probability model. Biostatisticians, however, were skeptical about using such 
methods for, say, clinical trial data. It was often impossible to justify particular 
parametric models, and there was accumulating evidence that most of the 
parametric procedures lacked robustness. Statisticians began to examine non-
parametric methods for censored data; some early seminal ideas were con­
tained in the papers by Kaplan and Meier [15] and Mantel [17]. Kaplan and 
Meier proposed the first nonparametric estimator of P(T < t) based on 
censored data, while Mantel proposed a nonparametric method for assessing 
the significance of observed differences in two samples of censored data. Cox's 
1972 paper [7] was the first successful attempt to incorporate regressor varia­
bles into nonparametric methods for censored data. 

The nonparametric methods quickly became popular in biométrie settings 
and the model proposed by Cox grew into widespread use in analyzing data 
from cancer studies. Cox's model incorporated covariates into the distribution 
for T by assuming that the conditional hazard rate for T, given the covariates, 
was 

A(/|Z)=X0(/)exp lÏZjpj J, 
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where X0 was an unspecified baseline hazard function corresponding to Zy = 0, 
1 <y </?, and /? = (/?!,...,/^) was a vector of unknown regression coeffi­
cients. Inference about 0 was based on a likelihood-type function, which Cox 
called a partial likelihood, and asymptotic distribution theory for statistics 
derived from the partial likelihood. Some of the distribution results were 
obtained through long, difficult proofs (e.g. Tsiatis [19]), some were "estab­
lished" by analogy with classical likelihood theory, and some were simply 
hoped for. As in the parametric setting, usable results established with current 
standards of mathematical rigor were difficult to come by. 

In 1975 Odd Aalen wrote a Ph.D. dissertation under Lucien LeCam at 
Berkeley which suggested an entirely new way of modeling lifetime data with 
what Aalen called multiplicative intensity models. The data for a homogeneous 
subsample (possibly of size 1) was viewed as a counting process {N(t), t > 0} 
on the real line; this counting processs was trivially a submartingale and, under 
mild regularity conditions, its Doob-Meyer decomposition was of the form 

N(t) = M{t) + rY(s)X{s) ds9 

where {M(t)91 > 0} was a locally square integrable martingale with respect to 
an appropriately defined filtration, {Y(s)9 s > 0} was a predictable stochastic 
process easily determined from the problem at hand, and X(s) was the hazard 
function and object of inference for the units in the subsample. It turned out 
that almost without exception, statistical procedures being used for lifetime 
data were based on processes of the form jhdM, or linear combinations of 
such processes. Since at most a minor modification was needed to insure that h 
was a predictable process, the theory of stochastic integrals implied that such 
statistics were themselves martingales. Fundamental results on central limit 
theorems and weak convergence to Wiener processes for sequences of 
martingales now reduced difficult proofs of asymptotic distribution theory to a 
much more standard exercise in checking Lindeberg type conditions. In his 
dissertation and a subsequent paper [1], Aalen provided the first weak conver­
gence theorems specifically tailored to sequences of stochastic integrals with 
respect to counting process martingales. 

When the significance of Aalen's ideas was understood, the direction of 
mathematical research into censored data methods changed quickly. M. Rebol-
ledo [18] simplified considerably the conditions in Aalen's weak convergence 
theorem. Richard Gill [11] used the approach in the first comprehensive 
rigorous study of the operating characteristics of two sample censored data 
linear rank statistics, both under null and alternative hypotheses. Gill also 
showed how martingale inequalities and invariance principles could provide 
direct and simple proofs of known and new asymptotic properties of Kaplan's 
and Meier's estimator; in conjunction with Per Andersen [3] and later with Per 
Andersen, Ornulf Borgan and Niels Keiding [2], he applied these ideas to the 
Cox model and to multisample nonparametric statistics. Several authors found 
the stochastic integral formulation both powerful and convenient for studying 
entirely new approaches to censored data, both in the form of new statistics 
and new group sequential experimental designs (e.g. [10] and [14]). 
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The martingale based proofs all have some common characteristics: they are 
structurally simple, invariably short, and are based on results that applied 
statisticians have never seen. As universal as the Doob-Meyer decomposition, 
stochastic integrals with respect to L2 martingales, and progressively measura­
ble and predictable processes with respect to right continuous, complete 
filtrations all seem to probabilists, these topics have not filtered into the 
classical statistical literature at all. Both Aalen and Gill provided excellent 
summaries of these notions, but for detailed explanations readers were referred 
to a large body of literature, most of it in French and essentially inaccessible to 
those who needed it most in this context. Research statisticians cannot thor­
oughly understand a tool they have only seen summarized. Now Martin 
Jacobsen has taken that tool apart in this special setting and shown in detail 
how it works. 

The outline for Jacobsen's monograph is tightly organized and well thought 
out. Chapter 1 provides basic definitions associated with probability measures 
on (0, oo ] and a careful construction of an appropriate probability space for 
one-dimensional counting processes. Appropriate filtrations are established 
constructively, and their necessary properties are established directly, rather 
than by reference to other more general results from measure theory. The 
simple structure of the path space here gives an algebraic flavor to many of the 
proofs, some of which are quite elegantly constructed. The chapter closes with 
a self-contained proof of the existence-half of the Doob-Meyer decomposition 
in this setting, a rigorous derivation of a likelihood function, and some 
well-chosen exercises. 

With some exceptions, Chapter 2 repeats the program of Chapter 1 for 
multidimensional counting processes. Discrete time counting processes and 
processes defined on product probability spaces appear in this chapter, but not 
in Chapter 1. 

The third chapter is the shortest, but much of the intended audience will 
find it the most useful. It is a self-contained treatment, for this special setting, 
of stochastic integrals with respect to martingales. The roles of predictable 
processses, increasing processes, the Doob-Meyer decomposition and quadratic 
variation processes are explained with careful definitions and detailed proofs. 
This chapter also closes with some useful exercises, although Exercise 3.E.2 is a 
result by Boel, Varaiya and Wong [5] and a reference to the literature should 
have been provided. 

Chapters 4 and 5 show how this material is applied to counting process data. 
Aalen's multiplicative intensity model is developed in Chapter 4, and the 
model is illustrated for homogeneous samples of censored and uncensored 
lifetime data, Markov chains with time dependent transition intensities, and 
the Cox regression model. Chapter 5 explores in detail the application of 
invariance principles for sequences of martingales to counting process statis­
tics. Specific results are illustrated for cumulative intensity estimators, the 
Kaplan-Meier estimator, and some two sample statistics. 

The monograph closes with a short but lucid appendix on the principle of 
repeated conditioning and weak convergence of probability measures. 
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Some general comments about the book are perhaps in order at this point. It 
has obviously been prepared with great care. There are exceptionally few errors 
of substance. Example 5.2.6 does contain a subtle error in the use of the 
Lebesgue convergence theorem. Lapses like this are rare, however, and typo­
graphical errors are almost equally rare. 

There are some drawbacks, which may seem more serious to some readers 
than to others. The title is a bit of a misnomer. Don't expect to see any 
statistical analyzing going on here. The models and their asymptotic properties 
are examined in detail, but not a single datum is hiding anywhere between the 
covers. The results in Chapters 4 and 5 stop a good deal short of what is 
currently in the literature, so mathematicians interested in research in this area 
will have to look elsewhere for the problems statisticians consider important. 
§5.4 on the comparison of two intensities appears almost as an afterthought. 
Gill's monograph and the work of others has shown, though, that this may be 
the most natural way to think about the two sample censored data problem. 
Statisticians have told me, and I tend to agree, that Martin Jacobsen has 
underestimated the prerequisites necessary for reading the text. Jacobsen 
assumes "some knowledge of probability... especially conditional probabili­
ties, weak convergence and basic martingale theory." Some statisticians may 
have been introduced to basic martingale theory in a treatment like that in 
Karlin and Taylor [16], but they will still struggle with the measure theoretic 
and path algebraic proofs Jacobsen has constructed in the Meyer-Dellacherie 
style. 

We should not ask too much of this text, though. Martin Jacobsen chose a 
well-defined target, and hit it squarely. 
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No one is very surprised if an area of mathematics can solve its own 
problems. The surprise is when one area of mathematics can help solve those 
of another. In recent years it has been our good fortune to see problems from 
places like algebraic geometry and differential topology solved using nonlinear 
partial differential equations. Of course, an area should not be judged solely on 
how it helps other branches of mathematics—but the publicity sure helps 
convince the skeptical of its current relevance. With this in mind, it is 
important to note that these developments have taken place as part of a 
vigorous general advance in our understanding of nonlinear partial differential 
equations. 

Linear problems dominated analysis in the first half of this century, which 
saw the emergence of the now classical linear functional analysis of Hilbert 
and Banach spaces. A major source of motivation for this work came from an 
attempt to understand the wave, Laplace, heat, and Schrödinger partial dif­
ferential equations of mathematical physics. The development of Fourier 
analysis was one of the most fruitful discoveries, serving simultaneously as 
both a tool and as a subject in its own right. Now many of the linear 
differential equations are linear for a very simple reason: one takes a nonlinear 
equation and bluntly linearizes it (see any derivation of the wave equation 


