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how modular representations could be used to prove structure theorems for 
/?-solvable groups. (In fact, the first version of their theorem showed how to 
give the structure of finite groups of exponent six by a reduction to examina­
tion of specific representations of the symmetric group of degree three and the 
alternating group of degree four in characteristics two and three, respectively!) 

The last volume is devoted to simple groups and begins with the local theory 
of finite groups. A /?-local subgroup of a finite group is a normalizer of a 
nonidentity /̂ -subgroup, and the local theory is that body of theorems which 
show how much of the structure of finite groups is captured by these sub­
groups. These ideas are the main ideas used in the classification. The next two 
chapters deal with certain permutation groups which are basic to the study of 
simple groups. First, the Zassenhaus groups are described, and this is the first 
time in book form. This is one of the first steps of the classification. Second, 
multiply transitive groups are studied; this is where the sporadic groups first 
arose, in the work of Mathieu, well over a century ago. 
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The present book is a review of the current state of the theory of factoriza­
tion of nonsingular matrix functions along closed contours and systems of 
singular integral equations. As such it is a natural companion of the Gohberg-
Krupnik book [8] which deals with scalar equations. To understand the type of 
factorization considered here, it is necessary to recall its definition. Let T be an 
oriented closed smooth contour on the Riemann sphere with inner domain F+ 

and outer domain F~, and assume t~ are fixed points in F± . Let A(t),tET9 

be a nonsingular n X n matrix whose entries are continuous functions on T. A 
factorization of A relative to the contour T is a representation of A in the form 

(i) A(t)=A_(t)D(t)A+(t)9 ter, 

where D(t) is an n X n diagonal matrix, 

« ™-**(W (££D-
the matrix functions A+ and A_ are analytic on the inner and outer domain of 
T, respectively, both A + and A_ are continuous up to the boundary of T, and 
det A ± (t) does not vanish on F ~ U I\ The integers KX > • • • > K„ are uniquely 
determined by A and called the partial indices of A relative to T. The 
factorization is called canonical when all indices are zero. The role of the points 
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t+, /" is not important as long as they are in the right domains. Often the 
contour T will be just the unit circle T0, and in that case one may take t+ = 0, 
t~— oo and 

D{t) = diag(/K',...,/K"). 

The fact that the diagonal term D(t) appears as the middle factor in the 
right-hand side of (1) is crucial. It accounts for the uniqueness of the partial 
indices, which is lost in factorizations of the form A =A_A + D, where D 
appears as the third factor. 

Factorizations of matrix functions relative to a contour were introduced in 
the beginning of this century by J. Plemelj, N. I. Muskhelishvili, N. P. Vekua, 
and others as special solutions of barrier problems of Hilbert and Riemann-
Hilbert type in complex function theory. Later on other reasons appeared 
which justified interest in such factorizations: Systems of singular integral 
equations, vector-valued Wiener-Hopf equations on a half line and their 
discrete analogues—the block Toeplitz equations—can be solved when a 
factorization of their symbol (which is a matrix function) is available (see part 
VI of [13] and [7, 6]). In this development the Gohberg-Krein paper [7] played 
an important role. In [7] the classical factorization results were extended to 
wider and more natural classes of matrix functions and were put into the 
context of functional analysis and operator theory. This new approach made it 
possible to use a great variety of methods and results from Banach algebra 
theory and opened the way for new applications to integral equations and 
operator theory. Today it is clear that applications of factorization relative to a 
contour are not restricted to barrier problems and systems of integral equa­
tions. Such factorizations have become increasingly important, and now the 
subject seems to form an intersection where different routes in pure and 
applied mathematics meet. See, for example, Grothendieck's paper [5] where 
the factorization appears in disguised form and [2, 4, 9, 10, 12, 14] for recent 
developments and further references. 

In the present book the emphasis is on the connections between factorization 
relative to a contour and singular integral operators. The interplay between the 
two is one of the main themes. To see these connections in more detail consider 
on Ln

p(T) (the space of all C"-valued vector functions with components in 
Lp(T)) the operator Tdefined by 

(3) (Tf)(s) = B(s)f(s) + C(s)j-.f^dt, s G T. 

Here B and C are given continuous n X n matrix functions defined on T. In 
other words, T = B + CS9 where B and C are viewed as multiplication 
operators and S is the basic operator of singular integration on the contour T. 
Usually the operator T is rewritten in the form T = (B — C)[AP + Q], where 
A = (B - C)'\B + C) and P, Q are the projections /> = £ [ / + S]9 Q = 
j[I — S]. If, in addition, the matrix function A admits a factorization A = 
A_DA+ relative to T, then T can be written as the product 

(4) T=(B- C)A_[DP + Q][A + P + AZlQ]. 
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In this representation of T the factors (B — C)A_ and A + P + A~}Q are 
invertible operators, and hence the problem of inversion of T is reduced to the 
equivalent problem of inversion of the simpler diagonal operator DP + Q. For 
example, the operator T is invertible only in the case of canonical factorization 
when all partial indices are equal to zero, and in this case 

(5) T~x = (A-^PAZl +A_QAZl)(B - C)"1. 

In general, when nonzero partial indices occur, the operator T is Fredholm, the 
dimension of its kernel is equal to the sum of the absolute values of the 
negative indices, and the codimension of the image of T equals the sum of the 
positive indices. 

For singular integral operators with coefficients B and C that are not 
continuous, but merely bounded and measurable, similar connections hold, 
except now the factorization (1) with continuous factors has to be replaced by 
a so-called generalized factorization (H. Widom (1960), I. B. Simoneko (1968) 
and N. Y. Krupnik (1976)). In the generalized factorization the factors A± 

appearing in (1) are allowed to be unbounded; they only have to satisfy the 
requirement that the operator A_QA~_X acts as a bounded operator on Ln

p(T\ 
which is a natural condition if one looks at the form of the inverse of the 
singular integral operator T in (5). It is clear that generalized factorization 
depends on the contour T and on the space where the singular integral 
operator acts, and hence one has to speak about generalized factorization 
relative to Lp(T). To distinguish generalized factorization from the factoriza­
tion with continuous factors considered in (1) the latter will be referred to as 
continuous factorization. Continuous, as well as generalized, factorization is 
defined in global terms, but the existence of such factorization is basically 
determined by the local properties of the function. 

An important special topic in factorization theory concerns selfadjoint 
matrix functions on the unit circle T0. For such a function it is more natural to 
consider the factorization 

(6) A(t)=A%(t)D0(t)A+(t), * e r 0 , 

where A+ has the usual properties and D0(t) is a selfadjoint block matrix 
function of the following form: the blocks off the second diagonal are all zero 
and the blocks on the second diagonal are: 

Here the symbol Ik denotes the k X k identity matrix. A relatively recent 
theorem by A. M. Nikolaichuk and I. M. Spitkovskii (1975) states that a 
selfadjoint factorization as in (6) is always possible when A admits an ordinary 
factorization relative to T0. Moreover in that case al9...,ar are the distinct 
positive indices, the index ay occurring /iy. times, and p and q are positive 
integers such that p + q = n — TZr

j=xnj and p — q is the signature of the 
matrix A(t) which does not depend on t G T (a fact which is obvious for the 
continuous case and requires a little proof in the general case). 
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A full presentation of all these topics—continuous and generalized matrix 
factorization, the connections with and the applications to singular integral 
operators on vector-valued Z^-spaces, selfadjoint matrix factorizations, local 
principles—which over the past 25 years required the work of many mathema­
ticians, appears here in book form for the first time. But there is more. In 
connection with the method of inversion of the singular integral operator, 
which has been described above, many problems arise, which to a certain 
extent involve the measure in which the method is effective. The book pays 
much attention to these problems and the interesting developments which 
originated in this way. Here three of them will be discussed in more detail. 

A first problem is that for continuous matrix functions a continuous 
factorization may not exist at all. The main obstacle is that, in general, the 
algebra of continuous functions on the curve T is not decomposing, i.e., it is 
not always possible to write a continuous function on T as the sum of two 
continuous functions, one of which has an analytic extension inside T, while 
the other has an analytic extension outside T. The connection between continu­
ous factorization and decomposing algebras of matrix functions, which has its 
origins in the work of the second author, is nicely described in Chapter 2 of the 
present book with several new points added. In general, if the continuous 
matrix function A is nonsingular and sufficiently smooth, then A admits a 
continuous factorization relative to T. For generalized factorization the situa­
tion is different. A nonsingular continuous matrix function always admits a 
generalized factorization relative to Lp(T) (1 <p< oo) and, which is less 
obvious, the factorization can be made independent of p in the range 1 < p < 
oo. In particular, by the Nikolaichuk-Spitkovskil theorem mentioned above, a 
continuous selfadjoint matrix function on the unit circle admits a generalized 
selfadjoint factorization of the form (6) (cf. [1] where recently this result has 
been reproved in the context of Beurling-Lax theorems for shifts on an 
indefinite metric space). If the entries of the matrix function A are not 
continuous, but only piecewise continuous, then, in general, generalized fac­
torization relative to L (T) is possible only for certain values of p and the 
partial indices depend on p. The latter results are due to I. Gohberg and N. Ya. 
Krupnik (1969) and build on earlier work for scalar functions; they appear in 
Chapter 8 of the present book. 

A second main problem to which the book pays much attention and which 
arises naturally in applications is the problem of finding the factors and the 
indices in an explicit way. This problem appears in several different versions. A 
preliminary version concerns canonical factorization. Assuming the matrix 
function admits factorization, continuous or generalized, when can one tell in 
advance that all partial indices will be zero and the corresponding singular 
integral operator will be invertible? A classical case is that of dissipative matrix 
functions on the unit circle. When on the unit circle such a factorization exists, 
it is necessarily canonical. On the other hand, a (somewhat unexpected) 
theorem of A. S. Marcus and V. I. Macaev (1976) (appearing here for the first 
time in English) tells us that in the matrix case this result characterizes the unit 
circle and does not hold for other contours. In this context also, 
Rabindranathan's theorem (1969) should be mentioned (appearing in Chapter 
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8), which gives a necessary and sufficient condition in order that an essentially 
bounded nonsingular matrix function on the unit circle ro, whose inverse is 
also essentially bounded, admits a canonical factorization relative to L2(T0). 

Finding the factors and partial indices explicitly is in general a very 
complicated and nontrivial problem which has solutions in special cases only. 
One of these cases concerns rational matrix functions. The classical way to 
obtain the factorization of a rational matrix function with no poles and zeros 
on the contour T (which is reviewed in Chapter 1) is based on an algorithm 
which produces the factors in a finite number of steps, but this algorithm does 
not yield formulas. In [2], which is briefly mentioned in the present book, the 
concept of realization of a rational matrix function is used to get necessary and 
sufficient conditions for canonical factorization expressed in geometric terms. 
The work [2] also provides explicit formulas for the factors in a canonical 
factorization, which recently have been extended to the noncanonical case [3]. 

Triangular matrix functions form another class for which it is possible to 
obtain explicit factorizations. They form the main topic of Chapter 4. Here one 
finds the constructive procedure (due to Gohberg and Krein [7]) to obtain a 
continuous factorization of a nonsingular triangular matrix function with 
continuous entries from a decomposing algebra and the general rule of G. N. 
Chebotarev (1956) to get the partial indices of a 2 X 2 triangular matrix 
function. Also in Chapter 4 one finds the Gohberg-Lerer results (1978) about 
mixed triangular 2 X 2 matrix functions on a compound contour. Such a 
function is lower triangular on one component of the contour and triangular 
with respect to the second diagonal on the other component. The interesting 
point is that its indices can be expressed in terms of the classical resultant for 
scalar polynomials. Further work in this direction appears in the dissertation 
of B. Kon [11]. 

A third main problem is the behaviour of the indices and the factors when 
the matrix function A is perturbed. This is the main topic of the last chapter. 
In the context of generalized factorization a proof is given of the Gohberg-Krein 
theorem [7] which states that the partial indices are stable under small 
perturbations only when the difference between the largest and the smallest is 
at most one. (In systems theory the latter condition reappears in the descrip­
tion of structural stability of systems [15].) Also, matrix functions A(-9s), 
which depend on a second parameter s, are investigated. First for the case 
when the dependence on s is analytic, and, secondly, for the case when A{t,s) 
is rational in (/, s). Assuming that the latter holds true, let $(A) be the set of 
all s such that det A(t, s) ^ 0 for each t G T. For s E <&(A) the function 
A(-, s) admits a factorization relative to T with partial indices KX(S) > • • • > 
Kn(s). It turns out (G. Heinig (1973)) that the partial index tuple 
[JC^J),. ..,K„(S)] is continuous in s off a finite subset of 0(^4); the method of 
proof used in the book is from Azoff, Clancey and Gohberg (1980). 

The reviewer has a very high opinion about the book. There is no doubt that 
the subject concerns a first-rate development in mathematics and its applica­
tions. The presentation of the material is excellent and at several places 
extremely elegant. The main ideas are well explained, the results are clearly 
stated and appear with full proofs. The book is not heavy in prerequisites; 
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what the reader has to know to understand the text is explained shortly where 
it is needed. Misprints occur, but their number is small. The main point is that 
the book does what it claims to do: It brings together, in a well-organized way, 
a representative variety of recent results on factorization of matrix functions 
relative to a contour and systems of singular integral equations. Several results 
from the Russian literature appear here for the first time in the English 
language. Many items did not appear in book form before and some (e.g., the 
notes on shift bases) are new and have not been published elsewhere. It is clear 
that for a number of years to come the book will be the main reference on 
factorization along a contour. Further, and probably this was not planned by 
the authors, the book can easily serve as a text for a one-semester graduate 
course. At the end of such a course the student not only will be acquainted 
with the present state of affairs of the subject, but also he will have developed 
a good understanding of a field which is still active and where further research 
will take place. 
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