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that goes beyond ZFC, and this often confuses sharp-witted beginners. One 
way out is as follows: introduce M as a formal constant into the language of 
set theory and let T be the theory in the larger language whose axioms are 
those of ZFC plus all sentences obtained by relativizing each of the axioms of 
ZFC to the set M. It follows from the Reflection Principle (which is in turn an 
important consequence of the Replacement Axiom) that T is a conservative 
extension of ZFC. That is, any sentence which is provable in T and which does 
not mention M can already be proved in ZFC; in particular, T is consistent. It 
is within T that one constructs the forcing extension N of M. In proving that a 
given assertion <p is true of N, one must identify a finite set of ZFC axioms 
which one assumes to hold in M and in the universe of sets as well. Then <p is 
proved within the corresponding finitely axiomatized subtheory of T. 

In the course which I taught from this book and have outlined here, my 
students found it necessary to hop around in the book quite a bit. Although I 
worried about this, they did not, and their consensus was that the book is 
demanding but readable. They especially liked the extensive indexing and 
cross-referencing which the author has provided. 

We found no serious mistakes and only a few misprints, most of them easily 
detected and corrected. One which deserves special mention is that the 
ordering relation q < p in part (b) of Definition 2.4 (p. 53), which is fundamen
tal to the forcing construction, should instead be p < q. 
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The general modular theory of representations of finite groups is the subject 
of Walter Feit's book, The representation theory of finite groups. The theory 
began with the work of Richard Brauer in the 1940s. Its goals were expressed 
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in Brauer's paper of 1944, On the arithmetic in a group ring: 

"We are far from knowing all important properties of group 
characters. In particular, we are interested in further results 
which connect the group characters directly with properties of 
the abstract group G. Any result of this kind means, in the 
last analysis, a result concerning the structure of the general 
group of finite order. One approach to our question is to 
study arithmetic properties—" 

That motivation still holds today, joined of course by a number of other ones 
as the theory developed over the years. 

In the classical theory of representations of a finite group G, characters 
correspond to finite-dimensional Zif [G]-modules V, where K is an algebraically 
closed field of characteristic 0 and K[G] is the group algebra of G over K. In 
practice it may be assumed that K is a sufficiently large algebraic number field. 
To study the deeper properties of characters, Brauer decomposed them modulo 
a prime. For that and other purposes, K may be assumed to be complete with 
respect to a prime ideal divisor p of the rational prime p. If R is the ring of 
£-local integers in K, an #[G]-lattice L, that is, an î -free, R[G]-modu\Q9 can be 
chosen in the K[G]-module V so that the characters Xv anc* XL ° L ^ anc* ^ 
coincide, in the sense that they agree on G. The quotient module L = L/pL 
then has the structure of an ifc[G]-module, where R — R/$ is a finite field of 
characteristic p. Its decomposition^gives the modular decomposition of Xv 
Three group rings, K[G], R[G], R[G], then occur in this theory with R[G] 
playing a pivotal role. Since the theory has significance only when/? divides the 
order of G, a peculiar situation arises. Reduction modulo p in this theory, 
unlike its use in number theory, studies a simpler structure by more com
plicated ones, namely K[G]and representations over K by R[G] and R[G] and 
representations over R and R. 

The theory is also called block theory because of the fundamental part 
played by blocks. Blocks arise from the decomposition of the group algebra 

(i) R[G] = @B 
B 

into a direct sum of indecomposable 2-sided ideals, the B being called the 
block ideals. Since R is complete, idempotents of R[G] lift to idempotents of 
R[G]. In particular, the primitive idempotent decomposition 1 = 2 B eB of the 
identity of R[G] corresponding to (1) lifts to a corresponding decomposition 
1 = 1BeB of the identity of R[G]. The indecomposable i£[G]-modules V are 
then put into blocks as follows: With abuse of notation, we put V into the 
block Bi(V= VeB. This applies, in particular, to indecomposable #[G]-lattices 
and to indecomposable #[G]-modules, since the latter can be viewed as 
i*[G]-modules. It also applies to the irreducible characters of G. For if x^ is 
the character of an irreducible #[G]-module F, then XV~XL f°r some 
indecomposable #[G]-lattice L in V. We then put Xv m t o t n e block B 
containing L. Of course, B then depends only on Xv anc* not on the choice of 
L. 
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A group-theoretic invariant connected with B is the defect group of B, a 
/̂ -subgroup D of G determined up to conjugacy in G. The relation of D to the 
modules in B remains one of the main problems in the theory. A number of 
conjectures posed by Brauer continue to fascinate the experts. 

Among the many remarkable discoveries made by Brauer, two were singled 
out by him as the First and Second Main Theorems. The First Main Theorem 
establishes a 1-1 correspondence between blocks of G with defect group D and 
the blocks of the normalizer N(D) with defect group Z>, the correspondence 
being induced by a Brauer homomorphism BrJ (̂Z)). The homomorphism Brjj is 
an algebra homomorphism from the center Z(R[G]) of R[G] into the center 
Z(R[H]) of R[H], defined for suitable subgroups H of G. In the First Main 
Theorem, blocks B and b of G and N(D) correspond if and only if the 
idempotents eB and eb are related by the equation Br^(D)(eB) = eb. 

The Second Main Theorem concerns the values of characters on elements of 
the form xy, where x is a fixed /̂ -element of G and y is any //-element in the 
centralizer C(x). These terms mean that x has order a power of p and y has 
order relatively prime top. In order to state the theorem, we need the notion of 
the Brauer character of an i*[G]-module V. The values of the trace function trK 

of V on //-elements of G are sums of //th roots of unity. Since the residue class 
map R -* R induces a 1-1 correspondence between the//th roots of unity in R 
and those in R, these values can be lifted to R. The R~valued function <pK, 
defined on the //-elements of G obtained in this way, is called the Brauer 
character of V. We put <pv into the block of G containing V. Given an 
irreducible character x of G, there exist algebraic integers dx<p in R, depending 
only on JC, x» and <p such that 

(2) x(xy) = 2dx9V(y) 

for all //-elements y in C(x). The <p in (2) run over the Brauer characters of 
irreducible /fc[C(x)]-modules. The Second Main Theorem states that dx<p ¥= 0 
only if the block B of G containing x and the block b of C(x) containing <p are 
related by the equation ^T^(x)(eB)eb = eb. 

Brauer stated most of his discoveries in terms of characters. In more recent 
developments in the theory, ring and module theories have played increasingly 
larger roles. One may see this in one of the deepest achievements of the theory, 
that concerning blocks with cyclic defect groups. In the case of blocks with 
defect groups of order p, Brauer obtained almost complete information. 
Among other things, he found a beautiful description of the modular decom
position of the irreducible characters in the block by properties of a tree. The 
extension by Dade of this work to the general cyclic case came 25 years later, 
and required new methods of Green and Thompson which work on the level of 
modules, but not on the level of characters. 

In 1959 J. A. Green introduced the notion of a vertex and a source of an 
indecomposable Z*[G]-lattice or i*[G]-module. The vertex of such a module V 
iŝ a subgroup P of G minimal with respect to the property that V is R[P]- or 
^[PJ-projective in the sense of relative projective modules in ring theory. P is 
then a/7-subgroup of G determined up to conjugacy in G. The source of V is an 
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indecomposable jR[P]-lattice or /?[P]-module S such that V is a direct sum-
mand of the induced module SG. The isomorphism class of S is unique up to a 
conjugate action by an element of N(P). Green also established a 1-1 corre
spondence between indecomposable G-modules V with vertex P and indecom
posable iV(i>)-modules with vertex P. Properties of V are reflected in its Green 
correspondent, but the exact relationships between V, its vertex and source, 
and its Green correspondent remain open questions. 

The obvious parallels between the Brauer and Green theories do in fact 
come from a number of relations between them. For example, if a block ideal 
B of R[G] is viewed as an indecomposable R[G X G]-module, then the 
diagonal embedding of a defect group of B into G X G i s a vertex of B, and the 
Brauer and Green correspondences are naturally related. It is interesting to see 
the form given by Nagao to the Second Main Theorem in the context of 
modules: 

Let L be an indecomposable ^[G^-lattice in a block B. Let x be a/?-element 
of G. Then the restriction LC(x) of L to C(x) decomposes as a sum L1 © L2 of 
J?[C(x)]-lattices L, and L2, where the indecomposable components of Lx 

belong to blocks b of C(x) satisfying Br£(x)(eB)eb — eb9 and where the 
indecomposable components of L2 have vertices not containing x. 

In recent years a rethinking of the basic ideas of the modular theory in terms 
of the basic structures R[G], R[G], K[G] has also taken place. With the insight 
gained by the earlier points of view, it has been possible to formalize some 
parts of the theory, thereby clarifying some of its features. For example, 
Alperin and Broue have constructed a Sylow theory for the set of pairs (P, b), 
where P is a /̂ -subgroup of G and b is a block of C(P). The First Main 
Theorem can then be interpreted as a Sylow theorem. The Second Main 
Theorem, in its newest guise, becomes a statement on the commutativity of two 
maps. 

The theory described so far is general in that it applies to all finite groups. 
The further elaborations of the theory when the groups are Coxeter or 
Chevalley groups are not part of the general theory as such. These elaborations 
exhibit striking compatibility with the Young theory of representations of the 
symmetric groups and with the Lie theory and the Deligne-Lusztig theory of 
representations of the Chevalley groups. But that is another story. 

In the introduction to his book, which was completed in 1980, Feit writes 
that his aim is "to give a picture of the general theory of modular representa
tions as it exists at present." His treatment, a personal, yet universal, account, 
succeeds admirably. Almost every development in the general theory during 
the then 40 years of its existence is commented upon with at least a biblio
graphical reference and fitted into a coherent scheme in his presentation. The 
bibliography of nearly 500 items is remarkably complete. Perhaps the book 
passes somewhat quickly over the recent formahzations of the theory. On the 
other hand, it tarries on the Brauer theory, and especially on the beautiful 
theory of blocks with cyclic defect groups. Any account of the cyclic theory 
must contend with inherent difficulties in the subject. In this book additional 
hardships are assumed by not requiring that K or R be splitting fields for G. A 
price is paid for this extra generaUty, but the development is as complete as the 
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reader could ever hope to have or to use. A number of important applications 
are given after the exposition of the theory. These include a study of permuta
tion groups of degreep and linear groups of degree at most/?, a study in which 
the cyclic theory plays a prominent part; an analogue in characteristic p due to 
Brauer and Feit of Jordan's theorem on the existence of normal abelian 
subgroups of bounded index; and the Glauberman Z*-theorem on the embed
ding of involutions in groups. 

The writing is spare yet elegant, slanted towards the specialist, yet self-con
tained. Readers familiar with Feit's Characters of finite groups will know the 
style. Misprints do occur at awkward places in the text, and the lack of 
punctuation may distract at first. But these are minor matters and will not 
deter the reader from the best account of the general theory. 
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In 1963 E. N. Lorenz wrote an article [L] discussing a meteorological model 
given by the system of differential equations: 

d* in . m dy ~>o dz 8 , 
-^- = - 1 0 * + lOy, -ft=2%x-y-xz, — = - - z + xy. 

(The constants are actually values chosen by Lorenz of certain parameters.) 
It is a remarkable fact that fifty years ago it would have been impossible to 

make more than a superficial analysis of the behavior of the solutions of this 
system, while today there is an extensive Uterature concerning it (including 
numerous articles and at least one book [S]). It is also the case that no 
standard text on ordinary differential equations contains anything of particular 
value in understanding this system. In contrast, the three books under review 
are of considerable value, in the sense that they would go a long way toward 
preparing the reader to read the Uterature. And, in fact, the book by 
Guckenheimer and Holmes discusses precisely this system in considerable 
detail. 


