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reader could ever hope to have or to use. A number of important applications 
are given after the exposition of the theory. These include a study of permuta­
tion groups of degreep and linear groups of degree at most/?, a study in which 
the cyclic theory plays a prominent part; an analogue in characteristic p due to 
Brauer and Feit of Jordan's theorem on the existence of normal abelian 
subgroups of bounded index; and the Glauberman Z*-theorem on the embed­
ding of involutions in groups. 

The writing is spare yet elegant, slanted towards the specialist, yet self-con­
tained. Readers familiar with Feit's Characters of finite groups will know the 
style. Misprints do occur at awkward places in the text, and the lack of 
punctuation may distract at first. But these are minor matters and will not 
deter the reader from the best account of the general theory. 

PAUL FONG 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 10, Number 1, January 1984 
©1984 American Mathematical Society 
0273-0979/84 $1.00 + $.25 per page 

Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, by 
John Guckenheimer and Philip Holmes, Applied Mathematical Sciences, 
Vol. 42, Springer-Verlag, New York, 1983, xvi + 453 pp., $32.00. ISBN 
0-3879-0819-6 

Smooth dynamical systems, by M. C. Irwin, Academic Press Inc., London, 
1980, x + 260 pp., $48.50. ISBN 0-1237-4450-4 

Geometric theory of dynamical systems, an introduction, by Jacob Palis, Jr. and 
Welington de Melo, Springer-Verlag, New York, 1982, xii + 198 pp., $ 
28.00. ISBN 0-3879-0668-1 

In 1963 E. N. Lorenz wrote an article [L] discussing a meteorological model 
given by the system of differential equations: 

d* in . m dy ~>o dz 8 , 
-^- = - 1 0 * + lOy, -ft=2%x-y-xz, — = - - z + xy. 

(The constants are actually values chosen by Lorenz of certain parameters.) 
It is a remarkable fact that fifty years ago it would have been impossible to 

make more than a superficial analysis of the behavior of the solutions of this 
system, while today there is an extensive Uterature concerning it (including 
numerous articles and at least one book [S]). It is also the case that no 
standard text on ordinary differential equations contains anything of particular 
value in understanding this system. In contrast, the three books under review 
are of considerable value, in the sense that they would go a long way toward 
preparing the reader to read the Uterature. And, in fact, the book by 
Guckenheimer and Holmes discusses precisely this system in considerable 
detail. 
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The reason why much more is known today concerning this system, the 
so-called Lorenz attractor, than would have been possible to know fifty years 
ago is, of course, the existence of digital computers. However, surprisingly 
enough the authors of the best mathematical articles concerning this system of 
differential equations made very little use of computers themselves, and their 
articles made no use of them whatsoever. In fact this body of mathematical 
work represents one of the best—and least controversial1—uses of computers 
in mathematics. 

The history of this example illustrates several changes which the rise of 
computers is having on the field of dynamical systems. First, in the numerous 
disciplines which model natural phenomena with ordinary differential equa­
tions, researchers are no longer limited to using differential equations which 
are solvable. Numerical solution of equations can be used when explicit 
solution is impossible. This represents a major change in the way mathematics 
is used, one whose full implications are still impossible to gauge. It is probably 
safe to say that the effects on applied mathematics will, in the long run, be 
quite dramatic. 

Of course when numerically obtained "solutions" of a system of differential 
equations are extremely complicated (chaotic is the current buzz word), it is 
difficult to know what they mean or even if they are very trustworthy. For 
example, when there is an apparent randomness to the solution, there is 
considerable concern that the observed behavior is merely an artifact of the 
computer or computation scheme. One way to check this is to use several 
computers and/or numerical methods and compare the results. However, in a 
chaotic system, such as the Lorenz equations above, one typically discovers the 
following surprising fact. An attempt to use two computation methods to find 
one particular solution with one set of initial conditions results in two 
"solutions" which have almost nothing to do with each other except for times 
quite close to the initial value time. Nevertheless, the overall picture, obtained 
for example by graphically plotting a number of solutions, is quite distinct and 
seems completely independent of the numerical methods used, accuracy of the 
computer, roundoff scheme, or almost anything else except the differential 
equation itself! 

Under these circumstances deeper understanding must occur in the realm of 
pure mathematics rather than that of numerical computation. In the case of the 
Lorenz equations this understanding was achieved by constructing what is 
called a geometric model which can be completely understood in a rigorous 
mathematical sense. What this means is that from numerical studies of the 

1 There is now a whole spectrum of "experimental mathematics" which poses some very serious 
questions for mathematicians. For example, how do we react to a researcher who establishes a 
"mathematical truth" without giving a proof or even making use of deductive logic, but instead 
uses a good experimental methodology, a methodology which is quite acceptable, say, to physi­
cists? This is a profound question for mathematicians which seems to have been given very little 
attention. The impact of computers on mathematics seems much more likely to come in the form 
of a mathematical empiricism than through computer aided proof. 
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system certain quite plausible "geometric assumptions" about it were for­
mulated. Then a rigorous mathematical analysis [G-W, W] was carried out for 
all systems satisfying these assumptions. The result is a complete topological 
description of the geometric model differential equations, i.e. any differential 
equations which satisfy the geometric assumptions. The result is too com­
plicated to describe here, but it seems quite satisfying as an explanation of the 
numerically observed chaotic behavior of the true Lorenz equations above. 

What is still missing, of course, is a proof that these equations satisfy the 
geometric assumptions. The reason this has not been proven, I suspect, is 
twofold. First such a proof, done by hand, would be extremely laborious 
computationally (although Guckenheimer and Holmes suggest that "in prin­
cipal [the assumptions] can be verified by numerical methods"). Secondly, it 
seems likely that such a proof would be rather unenlightening, and as a result 
no one seems sufficiently highly motivated to make the effort. This could be 
incorrect, of course, and the result could have an exciting proof or be false. The 
idea of understanding a complicated dynamical system from certain geometric 
hypotheses, however, is exactly what modern dynamical systems and the three 
books under review are all about. The idea of a geometric model provides an 
interface between the purely mathematical discipline and the application of 
mathematics. This seems to have been a fruitful concept and one which we can 
expect to see more frequently in the future. 

A second lesson one can learn from the Lorenz equations is that except for 
linear equations there is little relation between the simplicity of the algebraic 
form of a differential equation and the simplicity of qualitative behavior of its 
solutions. These equations have only the simplest nonlinearities, but the 
solutions are extremely complicated. (I heartily recommend that anyone so 
inclined try plotting the numerical solutions of this system with a microcom­
puter to get a sense of what is meant by the term "strange attractor.") The 
simplest quadratic differential equation or function can have extremely com­
plicated "chaotic" dynamics. 

For this reason it makes more sense to have the taxonomy for ordinary 
differential equations based on complexity of the dynamics rather than the 
more traditional scheme based on the algebraic form of the right-hand side of 
the equation (linear with constant coefficients, linear with variable coefficients 
etc.). The traditional approach makes sense if there is a technique for expUcitly 
solving an equation and this technique can be recognized from the algebraic 
form of the equation. Sadly a remarkably small number of nonlinear differen­
tial equations fall into this category. 

An alternative approach which seems to have been more or less adopted by 
all three of the books under review is to classify ordinary differential equations 
(and other dynamical systems) by the qualitative complexity of their dynamics. 
A qualitative description of a dynamical system can be many different things, 
but should include, at least, a description of the long run behavior of 
trajectories, i.e, what will happen to all (or most) initial conditions if we wait 
long enough. Thus a system displaying the simplest behavior from this point of 
view might be one in which all solutions converge to some fixed stationary 
point as time tends to infinity. 
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Of course, the typical nonlinear ODE will have a more complicated qualita­
tive behavior. The point is that a geometric taxonomy for dynamical systems 
might be the most enlightening in the world of nonlinear systems which cannot 
be explicitly solved. Indeed, if we could somehow magically obtain a closed 
form solution of the Lorenz equations for all initial conditions this would 
almost surely be completely unenlightening and it would still be necessary to 
make the same geometric analysis in order to understand the solutions. The 
idea of a qualitative geometric analysis is not new; it was certainly espoused by 
Poincare. It has been given new currency, however, by the desire to understand 
easily obtained, but often very complicated, numerical "solutions" to differen­
tial equations. One can even envision modelling by finding appropriate "geo­
metric assumptions" which are satisfied by the natural phenomena under 
investigation and studying the class of dynamical systems which satisfy these 
assumptions. In other words one might sometimes skip the step of algebraically 
formulating a model. 

This review has emphasized the interplay between dynamical systems and 
applied mathematics because this interplay is currently having a strong and 
generally beneficial influence on dynamical systems. It provides new directions 
for investigation and new motivation. However, we should not lose sight of the 
fact that dynamical systems is first and foremost a branch of pure mathematics 
and has the same goals and motivations as less applicable branches of 
mathematics. This seems to be the approach taken in the books by de Melo 
and Palis and by Irwin. Neither of these works deals to any great extent with 
applications, though both give numerous examples. (Neither makes any men­
tion of computers whatsoever, nor should they.) I liked both of these books 
and found their choice of topics and presentation quite good for an introduc­
tory course in dynamical systems, either at the advanced undergraduate or 
beginning graduate level. 

The book by Guckenheimer and Holmes, though similar in content, is quite 
different in spirit and intent. According to the authors it is primarily a " user's 
guide" intended for "members of the engineering and applied science com­
munities. .. who do not generally have the necessary mathematical background 
to go directly to the research liteature." The authors suggest that some parts of 
the book might well be read with a "microcomputer at hand, so that [the 
reader] can simulate solutions of the model problems." 

Clearly this book is squarely on the interface between the mathematical 
discipline of dynamical systems and the application of mathematics. I found it 
a remarkable and fascinating book from the point of view of the mathema­
tician who is generally familiar with the mathematics it contains, but less so 
with the applications. How well it will succeed in achieving its avowed purpose 
of serving the engineering and applied science communities is perhaps better 
judged by someone from those communities. The authors, a mathematician 
and an engineer, have undertaken a difficult task. My first impression is that 
this is a difficult book to understand without a considerable mathematical 
sophistication and/or some previous contact with the field, e.g. one of the 
other books mentioned above. It could very well be, however, that the 
engineering-applied science reader will be looking for something different in 
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this book than what the mathematician is. I believe that this would be an 
excellent choice for a more advanced course in dynamical systems which 
emphasized applications. Such a course might have as a prerequisite the 
material of one of the other books and should be supplemented with some 
original sources. 
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Special functions in queuing theory and related stochastic processes, by H. M. 
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xii + 308 pp., $37.50. ISBN 0-1266-0650-1. 

When the early mathematical models of queues were formulated in the 
beginning of this century, some of the main concepts in the more general field 
of stochastic processes were not fully developed. Hence these models were at 
best crude approximations of reality. As more and more tools from the theory 
of stochastic processes were made available, it was possible to formulate 
models which were more reahstic descriptions of the actual phenomena under 
study. As a simple illustration, one may refer to the underlying parameters of a 
simple queu, which by and large were assumed to be fixed, but more realisti­
cally vary in accordance with some underlying random fluctuations such as the 
queu size. Evidently the analyses of such models were more involved with the 
end results not being in terms of simple functions, but often involving in some 
form one or more of the family of functions—known as special functions—i.e., 
gamma, incomplete gamma, beta, incomplete beta, Bessel, modified Bessel, 
hypergeometric, etc. 

What then can be learned from the intersection of the vast amount of 
literature available in these two areas of mathematics, namely theory of special 
functions and queuing theory? This well-researched book provides a source for 
those who attempt to seek answers to this question. Its extensive bibliography 
lists recent contributions of many authors who have analyzed queuing models 
which differ from well-known early formulations in that they are often more 
reahstic descriptions of reahty. Precisely, the authors attempt to demonstrate 
how and where special functions appear in the analysis of special queuing 
models. 


