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But this is another story, better left to the reviewer of Volume III. As a 
preparation to all this new "microfocal" world, Chapter VII of Volume I 
presents a detailed treatment of the stationary phase formula (and a proof of 
the Malgrange preparation theorem, eventually needed in the microlocal 
reduction to standard forms). Chapter VIII is entirely devoted to the wave-front 
set, which is the central notion of (the first) microlocalization. Chapter IX 
looks at the analytic wave-front set and introduces a definition of hyperfunc-
tions in the spirit of Martineau. 
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The appearance of a book on shape theory provides the reviewer with the 
opportunity of assessing where shape theory came from, and what of value is 
coming out of it.1 

1. A little history: Cech homology 1928-1968. In the late twenties, there was 
point set topology and there was algebraic topology, but the correct relation
ship between the two subjects had not yet become clear. In those days, 
algebraic topology meant, in the main, the homology theory of simplicial 
complexes with integer coefficients. The topological invariance of this theory 
was more or less established, but the restriction of the theory to polyhedra 
appeared to the point set topologist to be arbitrary and ugly. 

Then, in 1928, Alexandroff [2] discovered a theorem which, with hindsight, 
can be seen to express the proper relationship between the two subjects. The 

1 References refer to the bibliography of the book under review. 
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principle underlying Alexandroff s theorem is this: very general topological 
spaces can be regarded as limits of simplicial complexes. More precisely, 
Alexandroff showed that a compact metric space X is always homeomorphic to 
the inverse limit of an inverse sequence of finite complexes, and that the Betti 
numbers obtained for X in this way are independent of which inverse sequence 
is used. Once this was understood, the discovery of Cech homology was 
inevitable. 

Alexandroff s principle, so familiar now, was considered at the time to be 
radical and important. Here is how Lefschetz hailed it in the introduction to 
his 1930 book: "The topological theory of complexes acquires thus a funda
mental importance; it is in truth the necessary first step in a general study of 
metric spaces." 

How dated that quotation sounds! Things developed in quite a different 
way. Point set topologists and algebraic topologists began to drift apart in the 
thirties. Alexandroff may have delineated their common frontier, but neither 
school found the border territory to be very interesting. 

Thus it happened that the development of Alexandroff s idea took place 
haphazardly over the next forty years. Perhaps it is worthwhile to recall some 
of the highlights. 

Originally, Alexander duality was expressed in terms of Betti numbers. Once 
cohomology was formulated, the duality could be put in terms of Cech 
cohomology. It was then clear that the dual statement relating Cech homology 
of the compact set to cohomology of the complement is false, so Steenrod [2] 
introduced "Steenrod homology" as a corrective. In the mid forties, Cech 
homotopy groups were introduced in the thesis of Lefschetz's student Christie 
[1] in order to state and prove a "Cech Hurewicz Theorem". Marston Morse 
published long papers in the late thirties generalizing "Morse Theory" to the 
case of a lower semicontinuous real valued function on a metric space, using 
Cech homology. The Vietoris-Begle Theorem (see Spanier [1]) related Cech 
cohomology of the point-inverses of a map to the cohomology morphism 
induced by that map: this, as well as work of Eilenberg-Wilder in the forties, 
anticipated the modern theory of cell-like maps. 

But all these were fringe topics. Increasingly, the business of algebraic 
topology was complexes and computation. Besides which the issue of ap
propriate generalization became more problematic when Eilenberg introduced 
singular homology, applicable to all spaces and owing nothing to Alexandroff s 
principle of approximation. Eilenberg and Steenrod restored the Alexandroff 
idea somewhat in their aesthetically influential book [1]. They pointed out that 
Cech homology with integral coefficients fails to be exact, but that this defect 
disappears when the coefficients form a field or a compact abelian group. 

More is going on here than a fiddle with coefficients. Two ways of explain
ing it emerged in the sixties. First, there was Milnor's explanation [2, 3]. Milnor 
showed that Steenrod homology theory on compact metric pairs is exact — in
deed it satisfies all the Eilenberg-Steenrod axioms, and is characterized by 
these together with two other axioms. Alexandroff s principle had been shar
pened by Cech in the continuity property that the homology of the inverse limit 
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is the inverse limit of the homology. Now Milnor showed that the deviation of 
Steenrod homology from the continuity property can be measured conveni
ently by Hirf, the derived limit: there is a short exact sequence 

0 - lim1 {H n + 1 U)} -» SH„(X) -* H„(X) -* 0 

where SH(X) and H(X) denote Steenrod and Cech homology of X 
= lim.{A7,}, the inverse limit over compact polyhedra Xt. If the coefficients 
form a field or a compact abelian group, the lim1 term simply vanishes, making 
Steenrod homology and Cech homology the same. 

The second explanation, equally correct, but different in emphasis, appeared 
in an unexpected place. Developing an idea of Grothendieck, Artin and Mazur 
[1] extended homotopy theory from complexes to inverse systems of complexes 
for use in algebraic geometry (étale homotopy). They observed that if one is 
willing to live with and use the inverse systems, rather than passing to inverse 
limits, so that the Cech homology group is replaced by a Cech homology 
pro-grouç ( s inverse system of groups), there results an exact pro-homology 
functor. Cech's mistake, from this point of view, lay in passing too rapidly to 
the inverse limit. The topologist's desire for a homology group rather than a 
pro-group is merely a prejudice. This idea was to reappear in shape theory. 

Meanwhile, back in point set topology, the Alexandroff principle was 
remembered, but not central. It appeared most directly in dimension theory. It 
appeared from time to time in the topological study of continua and their fixed 
point properties: some of the pathological examples were usefully considered 
as inverse limits, while for others the inverse limit point of view, while 
theoretically there, was not useful. Continua theorists in the forties were often 
concerned with various exotic definitions of "component", but there was so 
little contact with the algebraic topologists that nobody from that school seems 
to have considered the Oth Steenrod homology group as being generated by 
components of some sort. (In recent times this has been studied — see Krasin-
kiewicz and Mine [1].) 

Another group, notably led by Bing, was studying upper semicontinuous 
decompositions of 3-space in their attempt to settle the celebrated classical 
questions of 3-dimensional topology. Perhaps their attitude to the Alexandroff 
principle can be illustrated by the dictum, attributed to Bing by some of his 
students, that "inverse Umits are only good for proving theorems about inverse 
limits". 

In 1960, Case and Chamberlin [1] caused a stir among point set topologists 
by describing a one-dimensional continuum whose Cech homology, cohomol-
ogy and homotopy groups are trivial, but which possesses an essential map 
onto the figure eight. Even Milnor's exact sequence above, with n = 0, does 
not explain this. But liirf TTX is nontrivial. The concept of lim1 for nonabelian 
groups appeared in Bousfield-Kan [1] in the early seventies, and has been 
appropriated by shape theory. 

2. Shape theory and geometric topology. The highly selective history given in 
§1 ignores large parts of topology to which Alexandroff s principle is less 
relevant. And the term "point set topologist" is overused. By 1960 the point set 
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topologists had split into three rough groupings: the general topologists (who 
in modern times are intellectually close to the logicians), the ultra-classical 
topologists such as continua theorists, and the geometric topologists. 

Geometric topology, as I use the term, is the study of those properties of 
euclidean space and of finite- and infinite-dimensional manifolds which are 
invariant under homeomorphism (as against diffeomorphism, piecewise linear 
homeomorphism, or homotopy equivalence). The rapid growth of piecewise 
linear topology during the sixties made new tools available to geometric 
topology. Although not confined to low dimensions, nor to the United States, 
the practitioners of gemetric topology in the sixties were mostly associated with 
the school led by Bing. In the work of these people the concept of cell-like set 
recurred, i.e., a compact subset of a manifold which can be contracted in any 
neighborhood (although it might not be contractible in itself). In 1968, Karol 
Borsuk published his solution to a problem which had puzzled him for many 
years: the problem of what ought to play the role of "map" and "homotopy 
class of maps" in a Cech homotopy theory of compact metric spaces. He called 
his new category the shape category. What caught the interest of geometric 
topologists was the fact that, in the shape category, a compact space is 
equivalent to a point if and only if it is cell-like. Since shape theory agreed with 
homotopy theory on nice spaces (ANR's), it looked as if shape theory should 
replace homotopy theory in the study of manifolds whenever a non-ANR 
compact subset crops up. And in geometric topology one cannot avoid such 
sets. 

EXAMPLE (SIEBENMANN [2]). For n > 5 a self-map of a closed «-manifold is 
uniformly approximate by homeomorphisms if and only if all its point-in
verses are cell-like sets. There are 3- and 4-dimensional analogues due to 
Armentrout and Quinn respectively. 

The connections between shape theory and geometric topology multiplied. 
Borsuk's own illustrations, while clever, tended to be rather too classical. But 
Chapman's result in 1971 that two compact subsets of an end-slice of the Hilbert 
cube are shape equivalent if and only if their complements are homeomorphic [1] 
caused considerable interest. In present-day geometric topology, shape theory 
is taken for granted as a useful tool. A very good sampler of this interplay is 
Volume 870 of Springer Lecture Notes, edited by MardeSic and Segal [6]. 

3. Whose child is that? It was argued in §1 that Alexandroff s principle lies 
neither in point set topology nor in algebraic topology, but on the boundary of 
both. In modern translation: shape theory Hes neither in geometric topology 
nor in homotopy theory 

This has led to misunderstanding. Geometric topologists dislike the theory in 
shape theory. For example, an important distinction was developed in the 
seventies between the shape category and the strong shape category (suffice it 
to say that Cech homology is an invariant of the former while Steenrod 
homology is an invariant of the latter). There is no difficulty in phrasing this 
distinction in a pleasing geometrical way — but try to get a geometric topolo-
gist to listen while you explain the correct underlying homotopy theory! On the 
other hand, homotopy theorists show little interest in shape theory, even in its 
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homotopy theoretic aspects as expounded, say, in Edwards-Hastings [1]. Per
haps this is because they perceive shape theory as merely an application of 
ideas from homotopy theory which were developed for other, more exciting, 
purposes. But that is to judge shape theory as part of homotopy theory, which 
it is not. 

Misunderstanding also arises from duplication of discovery. For example, 
Borsuk's two innovations were: the fundamental class (= morphism in the 
shape category), and the idea of a compact set being movable. It became clear 
after a while that fundamental classes are essentially morphisms in the pro-ho-
motopy category of Artin and Mazur [1], and that movability is a geometric 
condition on a compact set which assures the vanishing of all liirf terms. (Cech 
homology is exact on the subcategory of movable pairs and shape morphisms.) 
This is not to imply that Borsuk knew of these connections. He was uncomfor
table with abstract ideas. He wanted to "see" his algebraic topology. He 
rediscovered these concepts geometrically and found use for them. As a second 
example, we could cite the Whitehead-Theorem-in-proper-homotopy-theory, 
proved independently by Farrell-Taylor-Wagoner and by E. M. Brown (neither 
reference is cited in the book under review), which reappeared as the 
Whitehead-Theorem-in-shape-theory (see Chapter II, §5 of the book). Again 
there was pay-off. The shape versions explain what is really going on. 

The point is that many of the new-sounding terms and insights of shape 
theory either have been anticipated by, or throw new light on, other aspects of 
topology. Therefore it is particularly important that a book on shape theory 
should interpret the subject to the various older constituencies in topology. 
Shape theory may be nobody's child, but it can claim kinship with many. 

4. Prospects. The reader might ask: apart from being a development of 
Alexandroff s principle, what has shape theory contributed to topology as a 
whole? And which developments look promising? Fair questions, but who can 
answer them fairly? 

By definition, all that is purely shape theory is to be excluded. Among the 
new theorems in topology motivated by shape theory, I particularly like: 
Ferry's theorem that a topological space homotopically dominated by a compact 
metric space is homotopy equivalent to a compact metric space [3], the theorem 
independently proved by Freyd-Heller [1] and Dydak-Minc [Dydak 9] that 
there exists an unsplittable free-homotopy idempotent, and the theorem of 
Hastings-Heller [2] that every homotopy idempotent on a finite-dimensional 
complex splits. (It would take another essay to say why I like them.) 

Among the counterexamples on the borderline of shape and geometric 
topology, Taylor's cell-like map which is not a shape equivalence [1] is justly 
celebrated. It combines homotopy theory of Toda [1], or Adams [1], with clever 
geometry to sink a knife into naive analogies between finite and infinite 
dimensions. Ferry's proof [2] that the compact spiral, although shape equivalent 
to the circle, is not equivalent to the circle by "cell-like expansions and collapses ", 
when set side by side with his earlier theorem [3] that two compacta homotopi
cally dominated by complexes are homotopy equivalent if and only if they are 
equivalent by "cell-like expansions and collapses", raises questions about the 
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role of compactness in homotopy theory, and about the analogy with Whitehead 
torsion, which remain to be answered. The example of Duvall and Husch [3] of 
an n-dimensional compactum which does not embed up to shape in R2w because its 
linf TTX is nontrivial is an unexpected twist in generalizing a PL theorem of Wall 
and Stallings about embedding polyhedra up to homotopy type: the known 
case n = 1 (solenoid) might have been exceptional but is not: they have 
examples for n = 2k. 

Next, connections outside topology. There have been several links, still 
tenuous, with functional analysis: one constitutes the background for Taylor's 
counterexample cited above; another is the work of Kaminker-Schochet [1] on 
^-homology and Brown-Douglas-Fillmore theory; a third is the recent work of 
Effros and Kaminker on C*-algebras and shape theory: the survey article 
Edwards-Hastings [4] discusses the first two of these. There is a branch of 
category theory called "categorical shape" possessing a large literature whose 
value I cannot judge. And then there is the "missing link": it is very surprising 
that shape theory, being so fundamentally concerned with compact sets, has 
had no significant interaction with dynamical systems, home of the strange 
attractor. Perhaps this is because shape theory is too coarse a tool for detecting 
dynamically interesting phenomena. Or perhaps the right contacts have not 
been made between the two areas. 

Finally, methods: many people know that the methods of shape theory are 
also the methods of proper homotopy theory. As far as I can see, this fact is not 
mentioned in the book under review, though the methods are presented in 
appropriate generality. In my opinion, there is more of interest in ends of open 
manifolds than in compact sets, so I believe that the future of the subject lies 
primarily in its methods rather than in the theory as presently formulated. 

5. The book. The editors of this Bulletin tell their reviewers that "a good 
book review is a chatty expository essay a book is an excuse for a review." 
I have tried to supply such an essay. I will end with some comments on what 
the book under review is and is not. 

In the authors' words: "The main purpose of this book is to present a 
systematic introduction to shape theory providing necessary background 
material, motivation and examples." The book does this in a thorough and 
scholarly way. But the prospective reader should note the word "introduction" 
in that sentence. Only the elementary parts of the subject are discussed in 
detail. The more difficult topics, both homotopy theoretic (e.g. strong shape) 
and geometric, are dealt with in brief surveys which lack proofs but direct the 
reader to the literature. In particular, this hard-covered book on shape theory 
does not contain a proof of Chapman's "complement theorem", stated in §2, 
which was a milestone in the subject (to be strictly accurate, " i f is proved but 
not "only if). Nor are proofs given of any of the theorems and examples I 
have italicized in §4 (again, to be accurate, the Freyd-Heller-Dydak-Minc 
theorem is not stated in the book, but its proof is buried in another context on 
pp. 214-218). The authors justify these omissions on grounds of space-limita
tion and because these results "depend on theories and techniques from other 
branches of topology and have already been adequately presented elsewhere". 
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With the exception of the Chapman theorem, the results italicized in §4 are 
only available in raw research-paper form. There is a real need, for instance, 
for an exposition of Taylor's example which does not require the reader go 
through "J(Ar)/F" by Adams. This material can be given a reasonably 
self-contained treatment, as can the other examples I have cited of major 
results in the subject. And all the results cited were available to experts, at least 
in preprint, before the book was completed. One must conclude that the 
primary purposes of this book are the education of students and the outlining 
of the literature. It is not a definitive exposition of the subject, and it is not 
addressed to the larger topology community. 

A striking feature of the book is its huge bibliography which shows that the 
authors know the kind of history I tried to sketch in §§1 and 2, as well as the 
recent literature. However, the history is relegated to "who did what when" 
notes at the end of each chapter (very accurate notes, by the way). Perhaps a 
broad sweep of history is not to the authors' taste, but I think the subject calls 
for it. After all, shape theory is hardly elegant mathematics, not even when well 
written, as in this book. It is technical mathematics, and technical mathematics 
needs all the justification available. 

In summary, this is a book which presents its subject well, but in a rather 
narrow framework. It is accessible to students at a relatively early stage of their 
studies, and will direct them to, but not guide them through, the more 
advanced topics. Those who use elementary shape theory in their work will 
find this book a convenient reference source. 
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Riesz spaces II, by A. C. Zaanen, North-Holland Mathematical Library, 
Vol. 30, North-Holland Publishing Company, Amsterdam, 1983, xi + 720 
pp., ISBN 0-4448-6626-4 

The analytic theory of Riesz spaces, which is the study of linear mappings 
between Riesz spaces, was initiated by F. Riesz in his 1928 address to the 
International Congress of Mathematicians held at Bologna. In his address, 
Riesz emphasized the important role played in analysis by partial order and 
indicated how classical results concerning functions of bounded variation were 
related to their order structure. His ideas led to the foundation of the theory of 
vector lattices, or Riesz spaces as they are known nowadays, with fundamental 
contributions from H. Freudenthal and L.Kantorovitch in the middle thirties. 
Freudenthal's contribution was the abstract spectral theorem which bears his 
name, a theorem whose formal resemblance to the spectral theorem for 


