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In 1843 Hamilton set down the generators and relations for the algebra of 
quaternions. This was the first nontrivial division algebra or skew field. That is, 
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the quaternions are an associative, unitary, not necessarily commutative alge­
bra for which each nonzero element has a multiplicative inverse. Since their 
introduction, division algebras have fascinated many mathematicians. Consid­
ering this, it is surprising that there are so few books on the subject. The books 
reviewed here are therefore welcome. 

To begin with, let us further delineate the subject. F will always be a fixed 
field and every algebra will be an F algebra. If D is a division algebra, then the 
center Z(D) = {a e D \ ab = ha for all b e D] is a field. D is called finite 
dimensional if D is finite dimensional as a Z(D) vector space. The theories of 
finite- and infinite-dimensional division algebras have very different flavors. 
The latter is more ring theoretic. In the former the properties of F are more 
closely tied to properties of the field Z(D). This has meant that the study of 
finite-dimensional division algebras benefits from the number theoretic, Galois 
theoretic, geometric, and ^-theoretic study of fields. Though half of Professor 
Dauns' book concerns the infinite-dimensional case, in this review we will 
confine ourselves to finite-dimensional division algebras. In fact, for us a 
division algebra will always be assumed to be finite dimensional. 

In what follows, we intend to describe a bit of the theory of division 
algebras, and then show how these books fit in and what part they cover. Our 
tactic will be to use some solved and unsolved problems to organize the 
discussion. We have to apologize, at the outset, for the topics we were forced to 
omit. 

To begin, we must define an integer, which is the most basic invariant of a 
division algebra. For a division algebra Z>, the dimension of D over Z(D) is 
always square. The square root of this dimension is called the degree of D. 

The modern study of finite-dimensional division algebras starts with the 
definition of the Brauer group. If Z>, D' are division algebras with the same 
center K, then D ®KD' is a simple algebra. By Wedderburn's theorem, 
D ®KD' is isomorphic to a matrix algebra Mm(D") for a unique division 
algebra Z>". We use this observation to define an associative, commutative 
product on the isomorphism classes of division algebras with center K. That is, 
we set D D' = D". K itself is the unit element. Alternatively, and usually, one 
proceeds as follows. Two simple algebras Mm(D) and MS{D') are called Brauer 
equivalent if D s D'. We can now define an operation on the equivalence 
classes of simple algebras by setting [y4][5] = [A ®KB]. Since each equiva­
lence class contains a unique division algebra, this definition yields the same 
structure as above. We have actually defined an abelian group because if D° is 
the opposite algebra of D (same K structure but reversed multiplication), 
D ®KD° = Mm(K). The group we have defined is called the Brauer group of 
K and is written Br(üT). The group Br(#) is always torsion, since if D has 
degree n9 then the class of D is annihilated by «. Finally, Br is a functor. If 
K -> L is a homomorphism of fields, the map D -> D ®KL induces a natural 
group homomorphism Br(#) -> Br(L). 

The introduction of the Brauer group is extemely important because Br(#) 
has been shown to be describable using powerful mathematical machines: 
group cohomology, étale cohomology, and algebraic ^-theory, among others. 
On the other hand, theorems about Br(#) do not necessarily answer questions 
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about the concrete structure of division algebras. In consequence, the theory of 
division algebras, at its best, involves the interplay of this Brauer group aspect 
and another side which can be roughly called ring theoretic. The difference 
between these two aspects is, perhaps, characterized by the two equivalence 
relations, Brauer equivalence and isomorphism. Theorems about Br(K) some­
times only yield results about some simple algebra Brauer equivalent to Z>. The 
ring theoretic aspect tries to answer questions about the internal structure of D. 
It has greatly benefited in recent years from the theory of the universal division 
algebras and polynomial identities. 

The first obvious question about division algebras can be roughly phrased 
as: what do they look alike? In this vein one asks: how do you construct 
division algebras? Beyond the quaternions, the first construction to consider is 
that of cyclic algebras. Let L/K be a cyclic Galois extension of degree n with 
group generated by g. Choose 0 # b e L. Form the L vector space ®f~*Lut. 
Make this a K algebra by specifying that u0 is the multiplicative unit, L s Lw0, 
utUj — ui+J if i +j < n, (ux)

n = b, and uxa = g{a)ux if a e L. The resulting 
algebra, called a cyclic algebra, is always simple with center K and is some­
times a division algebra. This algebra is written à(L/K9 g, b). 

When K has characteristic prime to n and contains p, a primitive nth root of 
one, the construction of cyclic algebras is even simpler. The field L above has 
the form K(a^n) where g(a1/w) = pa1/M. It follows that A (L /Ü: , g, b) is 
generated by a, /? satisfying an — a, ft" = b, and a/5 = p/?a. In this case we 
write the cyclic algebra as (a, b)n K. The quaternions are precisely the degree 
two cyclic algebra (-1,1)2,/?» where R is the real field. 

It is natural to ask whether every division algebra is cyclic. A highpoint in 
twentieth century algebra was the Brauer-Hasse-Noether proof that every 
division algebra with center a local or global field is cyclic. On the other hand, 
Albert constructed a noncyclic division algebra which is an example of the 
more general crossed product construction. Let L/K be a Galois extension of 
fields with Galois group G, and let c: G X G -> L* be a two-cocycle. That is, 
the map c satisfies g(c(h, A:))c(g, hk) = c(g9 h)c(gh, k) for all g, h, k e G. 
Form the L vector space © ^QLu(g) and make this a K algebra by setting 
u(g)a = g(a)u(g) f°r Ö e L, and u(g)u(h) = c(g, h)u(gh). This algebra, 
written à(L/K, G, c), is always simple with center K and is sometimes a 
division algebra. If G is cyclic, k{L/K, G, c) can be shown to be isomorphic to 
a cyclic algebra as defined above. The crossed product construction is more 
general than cyclic algebras in another way. Not every division algebra is 
equivalent to a cyclic algebra, but every division algebra is Brauer equivalent to 
a crossed product. Even more, the crossed product construction allows one to 
prove that Br(#) is isomorphic to the cohomology group H2(G, M*), where 
M is the separable closure of K9 M* is the multiplicative group of M, and G is 
the Galois group of the extension M/K. For later use we note an important 
fact. Let D be a division algebra and G a group of order the degree of G. Then 
D is a crossed product with group G if and only if there is a subfield L ç D 
with L/K G-Galois. 

The above ideas and facts were largely developed about 50 years ago. The 
study of division algebras was given new life around 15 years ago with some 
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work of Amitsur, which we will now describe. The facts in the above paragraph 
make it natural to ask whether every division algebra is isomorphic to a crossed 
product. A highpoint of the ring theoretic side of this theory was the proof by 
Amitsur that noncrossed products exist. The full theorem, as amplified by 
others, appears below. In this generality the theorem is not in print, but can be 
pieced together from [Ri, SI, and S2]. 

THEOREM 1. Suppose n is an integer andp is the characteristic ofF. There is a 
noncrossed product division F algebra of degree n if: 

(i) n is divisible by q3 for any prime q9 or 
(ii) n is divisible by q2 for an odd prime q # p and F does not contain a 

primitive qth root of one. 

Theorem 1 leaves open some obvious questions. Note first that division 
algebras of degrees 2 and 3 are known to be cyclic. The key remaining cases 
are contained in: 

Question 1. If D is a division algebra of prime degree greater than 3, is D a 
crossed product (and therefore cyclic?) 

That a division algebra D, of degree «, is not a crossed product says that D 
has no subfield Galois of degree n over Z(D). In the case of n composite, it is 
natural to ask more elementary questions about the subfields of D. It is known 
that D must have subfields which are of degree n over Z(D% and n is the 
greatest possible such degree. If qm is the highest power of the prime q dividing 
w, D has a subfield of degree qm over Z(D). The following, however, is not 
known and is of interest. 

Question 2. If D has degree qm does D have a subfield of degree less than qm 

over Z(D)1 
One aspect of Amitsur's counterexample was the proof that certain crossed 

products with group G were not crossed products with respect to other groups 
H. On the other hand, there are some isolated known cases where the opposite 
is true. For example, certain crossed products with the dihedral group are also 
cyclic [RS]. The general question could be phrased: 

Question 3. For which groups G and H is every G crossed product a crossed 
product with respect to H ? 

An example of the importance of Question 3 is its relation with Question 1. 
For instance, suppose G is a nonabelian group of order 20, and some G crossed 
product is not a crossed product with an abelian group. Then there is a 
noncyclic division algebra of degee 5. 

Knowing that some division algebras are not cyclic, one can then ask 
whether all division algebras may be in some way "as good as" cyclic. The 
algebras (a, b)nK seems particularly nice because their structure is determined 
by two independent parameters, "a" and "b". This notion of being de­
termined by independent parameters can be made precise, but is easier to 
consider the equivalent lifting property, which we now describe. If T is a local 
ring , M ç T is the maximal ideal, and K = T/M, then D = (a, b)nK "lifts" 
to T. That is, there is a rank n T algebra, A, with A/MA s D. The idea is that 
to lift D one merely has to choose preimages for a and b. If D were arbitrary of 
prime degree, then D always lifts in this way [S3]. One is led to ask: 
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Question 4. Does every division algebra have this lifting property? 
There is another aspect of Theorem 1 too technical to fully explain here. The 

actual noncrossed product division algebras constructed in Theorem 1 are the 
so called generic division algebras UD(F, n, r). These algebras and their 
centers have been the subject of much recent research. We refer the reader to, 
for example, [J, P, F, and S3]. 

On the Brauer group side of things, Merkuriev and Suslin have recently 
proved [MS] the truly remarkable result we are about to describe. In [Mi] 
Milnor defined the functor K2. In the case of K2 of a field K, K2(K) is 
generated by all "symbols" (a, b) where 0 # ayb e K, subject to the relations 
that {a, b) is bimultiplicative and { a , l - û } = l. Assume K contains a 
primitive «th root of one. It is then shown in [Mi] that the map K2(K) -* 
Br(/C), defined by {a, b] -> (a, b)n K, is well defined. The result of Merkuriev 
and Suslin is: 

THEOREM 2. Suppose K contains a primitive nth root of one. Then the above 
map induces an isomorphism K2(K)/nK2(K) = Br(K)n9 where Br(K)n is the 
set of elements of order dividing n. In particular, every division algebra of 
exponent n and center K is Brauer equivalent to a product of cyclic algebras of 
degree n. 

As with Amitsur's result, Theorem 2 has spawned a series of important 
questions, and more should arise with time. The first, and obvious one, 
concerns the restriction placed on K. 

Question 5. Is there a version or versions of Theorem 2 true for all fields? 
Several possible answers come to mind. Of course, one can ask whether any 

division algebra is Brauer equivalent to a product of cyclics. A favorite possible 
answer of this reviewer is one related to the lifting question mentioned above. 
The Brauer group has been generalized to a functor with domain the class of 
all commutative rings (even all schemes). Suppose F contains all possible roots 
of one, and T is a local F algebra with maximal ideal M. An easy consequence 
of Theorem 2 is that the natural map Br(!T) -» Br( r /M) is a surjection. One 
can now ask whether this is a surjection for all F. Very recently, Merkuriev 
showed that any odd order element of Br( r /M) is in the image of Br(7) [Ml]. 

Another outstanding issue left open by Theorem 2 concerns the number of 
the cyclics mentioned there. 

Question 6. If D is a division algebra, what is the minimal number of cyclic 
algebras needed in order to write the class of D as a product of cyclics? 

Little is known about Question 6. The best results to date consider the 
question of whether division algebras are isomorphic to products of cyclics (see 
eg. [RID. 

Finally, we consider the group structure of Br(K). If K contains all possible 
roots of one, then Theorem 2 can be used to show that Bx{K) is a divisible 
group. For general K one can ask: 

Question 7. What is the abelian group structure of Br(A^)? 
Examples are known (e.g. [FS]) which show that the group Br(K) can be far 

from divisible. On the other hand, Merkuriev has shown that not all abelian 
groups can be realized as the Brauer group of some field K. In part, Merkuriev 
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showed that a 3-group, which is the Brauer group of a field, must contain a 
nonzero divisible group [M2]. 

We have yet to explicitly mention a question that some will think should 
have come first. Namely, can we compute Br(üf )? More generally can we say 
interesting things about division algebras with special centers? Relatively 
complete knowledge is available concerning division algebas over local and 
global fields. The Brauer groups of rational function fields over local and 
global fields have been computed (see [FS] and the references there). However, 
little else is known about division algebras over these fields or other relatively 
"nice" fields. For example, assume K has transcendence degree 2 over F and F 
is algebraically closed. Suppose D is a division algebra with center K9 and the 
order in the Brauer group of the class of D has the form 2w3n. Then D has 
degree 2m3w [A]. Also, if D has degree 2,3, or 4, then D is cyclic. Naturally, one 
asks: 

Question 8. Does every division algebra D with center K as above have order 
equal to its degree? Is every such D cyclic? 

A great deal of the progress on the Brauer group side, including Theorem 2, 
is based on the corestriction map. If K ç L is a finite extension of fields, there 
is a natural homomorphism Br(L) -> Br(#) which is called the corestriction 
or transfer. Intuitively, the corestriction is the map induced by the usual norm 
map from L to K. The precise definition of the corestriction is fairly technical, 
and in some ways this map is not well understood. Though it is hard to phrase 
an explicit question, it seems that future work in Brauer groups will continue 
to study and use the corestriction. 

There are various special pieces of the theory of division algebras which have 
their own peculiar rich subtleties. A /̂ -algebra, for p a prime, is a simple 
algebra of p power degree and characteristic/?. There is a theory of /?-algebras, 
started by Albert, in which the Frobenius map and purely inseparable exten­
sions play a big role. A peculiar feature of /7-algebras is that the tensor product 
of cyclic/^-algebras is cyclic again. This has meant that it is harder to construct 
noncyclic/^-algebras. Such a construction was first made in [AS] (this reference 
in Draxl's book is mistaken). 

An involution of a division algebra is a linear endomorphism T which is 
product reversing and of order 2. If T fixes the center it is called of the first 
kind. If not, it is of the second kind. Albert showed that D has an involution of 
the first kind if and only if D represents an element of the Brauer group of 
order dividing 2. Involutions of the second kind are similarly related to the 
corestriction (see [Se]). A recent highUght in the theory of involutory division 
algebras was the construction of such an algebra of the first kind, which was 
not the tensor product of algebras of degree 2 [ART]. Theorem 2 implies that 
such an algebra is Brauer equivalent to a product of algebras of degree 2. In 
another direction there is a curious connection between involutions and 
Question 2. If D has even degree n and has an involution of the first kind, then 
D has a special such involution which is called of skew type. If T is such an 
involution, there must be a noncentral d ^ D such that r(d) = d. Such an 
element d9 moreover, must have degree no more than n/2 over Z(Z>). Thus 
involutions can be used to give a very small part of the answer to Question 2. 
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I hope it is clear that the full subject of division algebras is difficult to write 
about because of the depth and diversity of the methods that the theory uses. 
(This reviewer is trying his hand at it himself.) It is inevitable that any book 
will seem very incomplete. Professor Draxl's book emphasizes the Brauer 
group side of the subject. The corestriction map is carefully defined and 
properly highlighted. Chapters are devoted to the Brauer group aspects of 
/7-algebras and involutions. A particularly attractive feature of this book is the 
elegant treatment of a subject not touched on here, namely, the multiplicative 
group of a division algebra. These lecture notes begin very elementarily, so the 
author is merely able to state the Merkuriev-Suslin Theorem (the proof is truly 
daunting). This book is a very good introduction to the Brauer group of a field. 
I find it especially appropriate because it leaves the reader aware of how much 
more he must learn, and gives the reader some idea of where to go to learn it. 

The first half of Professor Dauns' book is also on finite-dimensional division 
algebras. The orientation of this book is decidedly ring theoretic. It covers 
cyclic algebras, crossed products, and Amitsur's theorem. This book is ex­
tremely elementary and is expansively written. It therefore covers relatively less 
material. The author explicitly decided to incorporate a good deal of repetition. 
For example, results are sometimes first proved for division algebras and then 
independently proved for simple algebras. The author is also very interested in 
examples, many of which are worked out in detail. Sometimes the author 
computes a special case and refers the reader elsewhere for the general proof. 
The result of this is that a mature mathematician may find the book slow and 
incomplete. A student, however, may well benefit from this approach. I would 
be happier with the book if this same student received more of a feeling of 
where the field is now, how much more there was to learn in it, and what he or 
she needs to know in order to make further progress. 
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A charge is a finitely additive, extended real-valued set function defined on a 
field of sets. The notion is thus a familiar one even to those who may not have 
used the term. But why should we study finitely additive measures? Haven't 
Borel and Lebesgue made them obsolete? We have become so accustomed to 
countable additivity that most of us take it for granted and feel we would be 
lost without it. Nevertheless, no less an authority than S. Bochner is quoted as 
having remarked that finitely additive measures are more interesting, more 
difficult to handle, and perhaps more important than countably additive ones. 

Everyone knows that density is a natural measure in the set of positive 
integers, and that it has proved very useful in number theory despite the fact 
that it is only finitely additive. Sometimes density is linked to a countably 
additive measure. For example, under an ergodic transformation of a normal­
ized measure space, almost all points generate sequences of images that fall in 
any given measurable set with a frequency (that is, density) equal to the 
measure of the set. The law of large numbers establishes a similar link between 
a countably additive probability and densities on almost all sample sequences. 

If countable additivity were really indispensable one might wonder how 
mathematicians managed to get along without it for so long. Of course, length, 
area and volume are actually countably additive, although this fact was not 
fully appreciated or exploited until the end of the last century. There are other 
circumstances in which countable additivity comes as a bonus; for example, 
when the domain is the field of closed open subsets of a compact space. As a 
consequence, any charge can be represented by a countably additive charge on 
a corresponding Stone space, but this representation is too esoteric to be of 
much use except for special purposes. 

It is a remarkable fact that countable additivity is sometimes forced by an 
invariance requirement. D. Sullivan and G. A. Margulis have recently shown 
that, for n > 3, Lebesgue measure is the only finitely additive measure on the 
bounded measurable subsets of Rn that normalizes the unit cube and is 
isometry-invariant, thus settling a very old and classical problem of Ruziewicz. 


