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Many of the problems that motivated the development of functional analysis 
had to do with sequences and series in various linear spaces. As outstanding 
examples, consider the expansion of a "general" function in terms of a given 
sequence of functions (Fourier series or, more generally, the expansion with 
respect to eigenfunctions of integral or differential operators), or the different 
convergence notions of sequences of measurable functions (almost everywhere, 
in measure, in Lp for some 1 < p < oo), or the convergence of certain 
sequences of operators (e.g., convolutions with suitable approximate identities). 

The results sought were either of a general nature—i.e., true in all Banach 
spaces (or other families of linear topological spaces)—or results in particular 
spaces: e.g., Hubert spaces, Lp spaces, reflexive spaces, etc. The uniform 
boundedness principle is a typical result of the first type. Results of the second 
type occur in almost every instance where functional analysis is applied to a 
specific problem. For example, when dealing with a differential equation, one 
usually considers a Hubert space (or Lp, or appropriate Sobolev space) setting 
and uses the special properties of this space to solve the equation. It is then a 
different problem (in which, again, the structure of the space usually plays an 
important role) to prove that the solution found is, in fact, smooth. 

With time, linear topological spaces, and Banach spaces in particular, 
became the subject of an independent study. A beautiful and deep theory 
emerged, involving the analysis of the structure and classification of general 
Banach spaces as well as the detailed study of specific Banach spaces, many of 
which are the common spaces of analysis. 

It is not at all surprising that many of the invariants developed for this study 
had to do with the behavior of sequences and series in the various spaces. Here 
is a quick early example. A sequence (xn) in a Banach space is called 
weak-Cauchy if Urn x*(xn) exists for every continuous linear functional x*. A 
Banach space is called weakly sequentially complete if every weak-Cauchy 
sequence in it converges weakly. It is already shown in Banach's Théorie des 
opérations linéaires that Lx[0,1] is weakly sequentially complete, while C[0,1] is 
not. Thus, one cannot embed C[0,1] as a closed subspace of l}[0,1]. 

This is a very simple, yet typical, example. It involves relations between a 
space and its dual and convergence with respect to one of the natural 
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topologies that a Banach space carries. These "topological" ideas were the 
main subject of the early development of the theory, and many deep and 
important results appeared. To mention just a few of these early results, recall 
Mazur's Theorem: If (xn) converges weakly to x, some convex combinations of 
the xn

9s converge to x in norm, or the Orlicz-Pettis Theorem: ƒƒ £ xn converges 
weakly for all subsequences of (xn), then these series are, in fact, norm conver
gent, or the Eberlein-Smulian Theorem: A set is weakly compact iff it is weakly 
sequentially compact. 

As the theory of Banach spaces developed, it became clear that their 
structure could be very complicated. A dramatic example was given in 1972 by 
Enflo's construction of a Banach space without a basis, and in fact without the 
approximation property—a much weaker "regularity" condition. In an at
tempt to develop some theory for general spaces, much effort was put into 
trying to find, for any Banach space X, at least a "regular" subspace of X. For 
example, it was already proved by Mazur (and mentioned in Banach's book) 
that every infinite-dimensional Banach space contains a basic sequence: i.e., a 
basis for its closed linear span. Can one say more? Could it be true that, in 
fact, every space must contain a basic sequence with some additional proper
ties? For a long time the conjecture was that every space should contain a 
subspace isomorphic to one of the standard sequence spaces—c0 or lp for some 
1 < p < oo. A counterexample was constructed in 1974 by B. S. Tsirelson. (A 
detailed exposition of this important space and its modifications will appear 
soon in a book by P. Casazza and T. Shura.) 

Because one cannot hope to get c0 or lp in every Banach space, one should 
settle for less. Could it be true that every infinite-dimensional Banach space 
contains an unconditional basic sequence? (Recall that a basis (xn) for a 
Banach space X is called unconditional if for every x e X the expansion x = 
L anxn converges to x under any rearrangement of its terms. Equivalently, 
H±anxn converges for all choices of signs.)This is one of the major open 
problems in the theory. An example of Maurey and Rosenthal shows that the 
naive hope that every basic sequence contains an unconditional subsequence 
fails. 

But not all results in this direction are counterexamples. There have been 
some very significant positive results. After the pioneering work of H. P. 
Rosenthal, he and others gave a series of necessary and sufficient conditions, 
all relatively simple to verify, for a space to contain a subspace isomorphic to 
lv The ideas involved here are of classical flavor, and the conditions have to do 
with topological structures and the action of linear functionals. The main result 
in the first Rosenthal paper goes as follows: Given a sequence (.*„) in a 
Banach space, either it has a weak-Cauchy subsequence, or else it has a 
subsequence equivalent to the unit vector basis of lv 

Another success was obtained by B. Maurey and J. L. Krivine. Following a 
breakthrough by D. Aldous in the understanding of the structure of subspaces 
of Ll[Q, 1], they identified a large class of spaces that necessarily contain lp for 
some 1 < p < oo. The situation here is, however, much less clear than the lx 

case. The condition here is only sufficient. It is an isometric condition that can 
be destroyed by renorming and is usually quite hard to check. 
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All these results are more or less a direct continuation of the study of 
Banach spaces as it was originally initiated. The main objects of study are 
infinite-dimensional spaces, and the properties studied involve topological and 
infinite-combinatorial considerations. Starting from the mid-1960s there has 
been a major change of direction—more and more emphasis has been placed on 
the "local theory"—i.e., the theory of finite-dimensional spaces and the ways 
they can be "put together" to form an infinite-dimensional one. The 1968 
paper of J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in 
2£p spaces and their applications, which was based on A. Grothendieck's work in 
the early 1950s, was most influential in this trend, although many results 
appeared much earlier. 

Many of the invariants of the infinite-dimensional theory have no finite-
dimensional analogue. This is true, for example, for those invariants that relate 
the behavior of sequences in the various natural topologies of an infinite-
dimensional space. Other invariants could be modified to apply to finite-
dimensional spaces. For example, in finite-dimensional spaces a series Ex„ 
converges unconditionally (i.e., L±x„ converges for all choices of signs) iff it 
converges absolutely (i.e., E||JC„|| < oo). The famous Dvoretzky-Rogers Theo
rem says that this characterizes finite-dimensional spaces. It turns out, how
ever, that one can still compare unconditional and absolute convergence even 
in finite-dimensional spaces. A routine application of the closed graph theorem 
shows that for a given finite-dimensional space X, there is a constant K so that 
YL\\xn\\ < ^sup||L±xw|| for all unconditionally convergent series Lx„ in X 
(where the "sup" is taken over all choices of signs). A typical problem of local 
theory is to estimate this K and to analyze its dependence on the space X. Thus 
the smaller K is, the "more similar" are absolute and unconditional conver
gences in X. In fact, this was exactly the approach of the original Dvoretzky-
Rogers proof. They proved that if dim X = d, then necessarily K > d1/4 (it is 
now known that K > d1/2). It was then a simple matter to produce in an 
infinite-dimensional space a sequence of finite series with increasingly worse 
ratios between E\\xn\\ and sup||L±*n|| and to put these together so as to give an 
unconditionally convergent series for which E||JC„|| is infinite. 

This example is very typical. The local theory is necessarily quantitative. 
Qualitatively all spaces of a given finite dimension are the same. Thus the 
invariants are quantitative, and usually one studies their asymptotic behavior 
as the dimension increases. 

The local theory has seen enormous success in the last decade. Using tools 
from diverse fields, such as integral geometry, combinatorics, probability, and 
harmonic analysis, many delicate and precise results have been obtained. The 
forthcoming Lecture Notes of V. D. Milman and G. Schechtman and G. 
Pisier's forthcoming CBMS notes, based on his Missouri lectures, should 
provide a very good idea of this theory, its objectives and techniques, as well as 
its relations with other branches of mathematics. 

Let me now discuss the book under review. It covers much of the classical 
theory as well as many recent developments. The emphasis is on the qualita
tive, topological and infinite-combinatorial aspects of the infinite-dimensional 
theory. 
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Assuming only basic functional analysis and measure theory, the author 
gives a thorough, complete, and self-contained presentation of many of the 
fundamental results, including weak- and weak*-topologies, the Eberlein-
Smulian Theorem, the Orlicz-Pettis Theorem, basic sequences, the Dvoretzky-
Rogers Theorem (via /^-absolutely summing operators), weak- and weak*-con
vergence in classical spaces, Choquet theory, Ramsey's theory, and much more. 

He then goes on to present Rosenthal's lx theorem and many of its 
variations, including the important Josef son-Nissenzweig Theorem, which states 
that every infinite-dimensional dual space contains a w*-convergent sequence 
with no norm-convergent subsequence. This sets the stage for a thorough 
discussion of spaces X so that the unit ball of X* is w*-sequentially compact. 

This short list is very far from an exhaustive description of the contents of 
the book, which contains many more, important results. The book is written in 
textbook style, and the author has been very careful to present each topic in 
great detail and to present some of the very recent developments on almost 
every topic. Each chapter has a set of exercises that further develop the theory 
and a section of Notes and Remarks with important additions to, and 
ramifications of, the material presented in the text. 

The selection of topics reflects the author's personal interests very much. 
While one can argue about the inclusion or omission of certain specific topics 
(e.g., the Krivine-Maurey Theorem is very much in the spirit of the book and I 
would have included it), it is obvious that some selection must be made. The 
only regret I have in this respect is the neglect of the quantitative theory. The 
author apologizes in the introduction for not including the theory of type and 
cotype, as it would have greatly increased the length of the book. But much less 
than a thorough presentation would have sufficed. A little more emphasis on 
the quantitative aspects of topics presented, such as /^-absolutely summing 
operators, finite versions of the Dvoretzky-Rogers Theorem, or a few more 
remarks and exercises showing finite-dimensional analogues of topics dis
cussed, together with few selected results from local theory would have 
changed the balance, and made the book more representative of current 
interests in research. 

The book has surprisingly many misprints for this prestigious series, but 
these are not more than slightly annoying, and I don't expect them to present 
difficulties even for the novice. 

With the rapid advance of Banach space theory, it becomes increasingly 
difficult to enter the field. There is a huge gap between the introductory 
functional analysis texts and the research-level treatises, and very little inter
mediate or textbook level material is available. Indeed, most of the material in 
this book appears for the first time in textbook-level form. Within the 
framework that the author set for himself, namely, an intermediate-level 
exposition of qualitative infinite-dimensional theory, he has done a very 
thorough job. 

The book is a most welcome addition to the unfortunately small number of 
books in the field. 
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