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A stochastic process is a family of random variables (Xt) defined on some 
probability space. The parameter / assumes values in an index set JH, and Xt 

assumes values in a measure space called the state space. Much of the theory 
developed originally in the cases where T is the set of positive integers or where 
T is the nonnegative real axis. In this context we think of Xt as a random 
function of time. While this theory was sufficient for the modeling of random 
functions measured over time, there arose the need for the consideration of 
random functions Xt where t assumes values in subsets of the plane or space. 
For example, weather variables recorded at various points in the atmosphere 
may be viewed as the realization of a stochastic process with T = R3. 

A random field is simply a stochastic process with T a measurable subset of 
Rd, for some d > 1. The pioneering works in the theory of stochastic processes 
of Levy, Kolmogorov, Khintchine, Feller, and Doob were concerned almost 
exclusively with the case d = 1. But it was Levy who first noticed the potential 
interest in the case d > 1. His early work on the Brownian motion of several 
parameters [8], now know as "Levy's Brownian motion", pointed out the 
direction for much modern research in random fields. In recent years interest 
in random fields has penetrated the theory of martingales, Markov processes, 
Gaussian processes, additive processes, and general second-order stationary 
processes. 

The branch of probability theory commonly called random fields, in particu­
lar, the material considered in the two books under review, has a scope more 
limited than that suggested by previous remarks. It is the subset of the theory 
dealing with extensions from d = 1 to d > 1 of the theory of processes that are 
stationary or have stationary increments, either in the strict sense or in the 
wide sense (second-order stationarity). Another recent book in this area is The 
geometry of random fields by R. J. Adler [1]. 

Second order random fields and isotropy. As is well known, ( I , ) , r G R1, is 
called second-order (wide sense) stationary if EXt = 0 (or any constant) and 
EXSXt+S = r(t), where the latter does not depend on s. If R1 is extended to Rd, 
s and / belong to Rd, and if the condition stated above holds, then the random 
field is called homogeneous. The classical spectral theory in R1 extends directly 
to Rd. This extension assumes significant interest when the assumption of 
isotropy is introduced: Xt is isotropic if the function r(t) above depends on t 
only through the nonnegative variable ||f ||, where || • || is the usual Rd norm. The 
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famous theorem of Schoenberg [12] states that the function r(s) is necessarily 
of the form 

MX / x Ç™J{d-2)/2(™)àG{u) 

(1) r{s)~l M < « - ^ • '>°> 
where G is a bounded nondecreasing function, and Jm is the Bessel function of 
the first kind of order m. This leads to the classical second-order expansion of 
Xt in spherical harmonics (Hv) on the unit sphere, 

(2) x,-Lc,iM\4)H.(t/M), 
V 

where (£„($)> s > 0) are mutually orthogonal processes on R1, and (cv) is a 
sequence of constants. This theory extends to random fields with homogeneous 
and isotropic increments, where E(Xt — Xs)

2 is a function of ||/ - s\\. Levy 
initiated this work with the case E(Xt - Xs)

2 = ||; - s\\. 
Yadrenko's book contains a comprehensive survey of this theory. The first 

half describes the spectral theory of isotropic fields, and the last quarter deals 
with the associated statistical questions of forecasting, extrapolation, and linear 
estimation. The remaining part of the book is concerned primarily with two 
specific problems in the special case where the field is Gaussian: the local 
smoothness of the sample functions, and the mutual absolute continuity and 
singularity of measures corresponding to two fields. Much of the book repre­
sents the author's own contributions over the years. It is written in the same 
style as the original work. It is a valuable collection of theoretical results and 
their proofs. 

Distributions of functionals such as level sets, extremes, and sojourns in the 
Gaussian case. Now we discuss some of the portions of random field theory 
based on the extension of strict stationarity from d = 1 to d > 1. In both cases 
the class of processes that has been most extensively studied is Gaussian. The 
reason is that the problems that have arisen in applications, such as determin­
ing the distributions of functionals, require a fairly explicit representation of 
the finite-dimensional distributions of the process. This is one of the features 
of the Gaussian process in the stationary case. The use of Gaussian models in 
applications is, of course, justified by the same logic as its extensive use in 
classical statistics, namely, by the central limit theorem. 

The pioneering work in the theory of functionals of stationary Gaussian 
processes was that of S. O. Rice [11] in 1945. This initiated four decades of 
activity that has increased in interest over the years. While most of this has 
been done in the case d—\9 there have also been extensions to d > 1. 
Consider the level set (t: Xt = x\ for fixed x. For d = 1 it represents the roots 
of a random equation in a real interval. The Rice Formula for the expected 
number of zeros of Xt was the first significant result, and much has been 
developed for d = 1 since that time; see, for example, Cramer and Leadbetter 
[6]. For d > 1 the study of the level set presents new and difficult challenges. 
Vanmarcke's book contains some of this material. A more comprehensive 
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theoretical treatment is also given by Adler [1]. But Vanmarcke's book is 
different from the others in that it is intended as a self-contained text with just 
a calculus prerequisite, and includes introductory chapters on probability and 
stochastic processes. In addition to the results on the theory of functionals of 
random fields, it also contains an elementary introduction to the spectral 
theory of Yadrenko's book. Among its features are its organization into clearly 
marked chapters and subsections and its abundance of explicit formulas and 
calculations. It will be useful as a reference for applied probabilists and 
engineers, as well as a text. 

The Markov property. The well-known Markov property of a stochastic 
process Xn t e Rl

9 is that for every T, the past Xn t < T, and the future Xn 

t > T, are conditionally independent, given the present XT. It was apparently 
Levy who first proposed the possibility of extending this concept to random 
fields. He defined Markovity in the following way: Xr t e Rd

9 is Markovian if 
for any surface S, which divides the space into two parts Vx and V2, the fields 
Xn t e Vl9 and Xn t e V2, are conditionally independent, given Xt, t e S. 
However, it was soon discovered that the condition in this definition was so 
strong that the only Gaussian Markovian fields were those which were de­
terministic in the sense that their values assumed on any smooth surface in Rd 

determined their values over all of Rd. In particular, in the isotropic case this 
implied that Xt = XQ almost surely for each t. Yadrenko's book describes some 
of this research. 

It was H. P. McKean who found the right definition of Markovity for 
random Gaussian fields in 1963 [9]. Let the surface S be as above, and let U be 
an arbitrary neighborhood of S. Let 3PV be the a-field generated by Xn t e U, 
and put J*"= H u^u- The ^ e ^ *s caUed Markovian if for any s and s' in the 
interiors of V1 and V2, respectively, Xs and Xs, are conditionally independent, 
given&. McKean proved that Levy's Brownian motion over Rd was Markovian 
for odd d but not for even d. This led to Pitt's work [10] on the characterization 
of the spectral density of a homogeneous Gaussian field having the Markov 
property. A brief outline of these results, without proofs, is in Adler's book [1]. 
The definition of Markovity for fields was also specialized to the original case 
d = 1, where it has been of much interest in the context of "germ fields". 

Hilbert space as the time domain ( d = oo). Some of the most striking results 
in this area are those for which the time domain is infinite dimensional. It was 
again Levy who made the first significant contributions. He extended the 
Brownian motion of d parameters to Hilbert space by defining E(Xt - Xs)

2 = 
\\t — s\\9 where || • || is the Hilbert norm. He showed that the sample paths were 
continuous on all finite-dimensional subspaces, but unbounded over all in­
finite-dimensional balls. This was complemented by the seemingly contradic­
tory result that the values of Xr for t in any ball, uniquely determine the value 
of Xs for every s in the space. Then he introduced the concept of the spherical 
average of Xr Let Bn be the unit sphere in Rn, centered at the origin, and put 

M„ = / Xtdt/Aie*(Bn). 
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Then the hmit exists almost surely for n -* oo and is called the spherical 
average of Xt. Similarly, for each / > 0, M(t) = ]imnMn(t) was defined as the 
spherical average over the sphere of radius t. Levy was particularly interested 
in the process M(t). Continuing this very imaginative work, he stated the 
theorem that Xt was a harmonic function over Hilbert space in the sense that 
the value of Xt was equal to the spherical average of the field over any sphere 
centered at /. However, the proof had an elementary error, and the result was 
never confirmed. 

Other probabilists then considered the extensions of these results to more 
general Gaussian fields over Hilbert space. Yadrenko's book describes his 
work for isotropic Gaussian fields. The basic tool in this area is Schoenberg's 
representation of an isotropic covariance function on the sphere [13]: 

(3) EXSX,= tcm(s,t)m, 
m = 0 

where (cm) satisfies cm > 0, L cm = 1, and (s, t) is the inner product. Much of 
Yadrenko's work is concerned with variations of the Markov property and 
their implications for the particular form of the covariance (3). The Russian 
edition of Yadrenko's book appeared in 1980, the year in which the reviewer's 
paper [2] was published. The latter contained several new results in the area of 
isotropic processes on the Hilbert sphere: 

(a) The process is deterministic: Its values on an arbitrary open subset of the 
sphere determine its values over the whole sphere. 

(b) Levy's statement on the harmonicity of Brownian motion, which was 
never confirmed, is valid in a suitable form for a general isotropic process on 
the sphere: For any t on the sphere, Xt is representable as a series of averages 
of Xs for points s belonging to subspheres that are in the subspaces orthogonal 
tot, 

(c) Let f(x) be a function in L2(<j>(x) dx), where <j> is the standard normal 
density, and define 

Mn(f) = f f(Xt)dt/Ar™(Bn), 
JBn 

where Bn is the unit «-sphere. Then Mn(f) converges almost surely to a 
random variable of an explicit form. Under further conditions on the coeffi­
cients in (3), Mn(f) satisfies central limit theorems with either normal or 
nonnormal limiting distributions. The main tool in the proofs of these theo­
rems is the representation of ƒ in a Hermite polynomial expansion. 

Finally, we remark that the theory has been extended from Hilbert space to 
/^-space. Schoenberg showed [12] that the limiting form of (1) for d -> oo is 

r ( j ) = re-»
2s2dG(u) 

for some bounded nondecreasing G, so that isotropic covariance functions on 
Hilbert space are limited to this type. Bretagnolle, Dacunha-Castelle and 
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Krivine [4, 5] extended this to lp. They showed that every isotropic covariance 
on the space is of the form 

r ( j ) = re-
uPsPdG(u)9 Jo 

and they also studied the conditions for the determinism of the field. 

Sets of continuity and discontinuity in infinite-dimensional spaces. Levy's 
result on Brownian motion on Hubert space-namely, that the sample func­
tions are continuous on finite-dimensional subspaces but unbounded on in­
finite-dimensional balls-is typical of more general Gaussian fields having 
isotropic increments. The discontinuity is explained by the fact that the ball is 
not compact, so that there is sufficient " time" inside the ball or on its surface 
for the sample function to achieve a big jump. This raises the question of 
continuity on a compact subset of the space that is not contained in a 
finite-dimensional subspace, such as an ellipsoid. The question is resolved in 
the following way. Let C be the compact set under consideration, and define 
the metric d(s, t) — (E(XS - Xt)

2)l/1. Then Xt has continuous or bounded 
sample functions on C if the metric entropy of C, relative to the metric d9 is 
sufficiently small, and, conversely, it has discontinuous or unbounded sample 
functions on C if the metric entropy is too large. The main reference here is the 
paper of Dudley [7] for subsets of Hilbert space. 

Recently the reviewer [3] described sufficient conditions for the unbounded-
ness of the sample functions of more general, nonGaussian fields over lp. It 
was shown, by comparing the conditions with those for continuity of the field 
(see, for example, Weber [14]), that the results for an ellipsoid C are nearly the 
best possible ones in the general cases considered. 

Conclusion. A concise historical description of the theory of random fields 
up to 1980, and the relevant literature is contained in Yadrenko's book in the 
section at the end with the title "Notes". Vanmarcke's book, which is written 
more with a view to applications, also contains many references to the applied 
literature in various fields of engineering. 
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Modern geometry (Sovremennaya geometriya), by B. A. Dubrovin, S. P. Novi-
kov, and A. T. Fomenko, Moskva:Izdatel'stvo "Nauka", 760 pp., R.2.00 
(Russian), 1979. 

This is a very important and interesting book. This volume is written by 
Russian authors who are experts in large areas of contemporary geometry and 
their applications. In particular, Novikov is a Field's Medalist and is publish­
ing most exciting research in the intersection of geometry, analysis, and 
physics. The original Russian edition appeared in 1979 in a one-volume 
edition, double the size of the present translated volume. I first came across 
this book shortly thereafter when a new faculty member in our department, 
Alexander Eydeland, showed it to me. In 1982 at the colloquium in Paris to 
honor Laurent Schwartz, I found a translation of this book in French, in two 
volumes. The present English translation comprises the first volume of the 
French edition. 

The best way to describe this volume is to say that it is a contemporary 
treatise on modern methods in geometry with deep applications to the physical 
sciences. It used to be that the great treatises of mathematics were written by 
scholars of analysis, and these volumes contained a synthesis of the geometry 
and analysis of their times. The latest example of this type of work is the 
comprehensive and marvelous treatise on analysis by Jean Dieudonné in 
twenty-five chapters, twenty-four of which have appeared in nine volumes. 

As a student, I studied geometry for each of my undergraduate years, but 
unfortunately it was not the kind of geometry presented in this new Russian 
book. Indeed, it was filled with linear projective geometry in all its classical 
points of view (triangles, Unes, hyperplanes, crossratios, and eventually conic 
sections). (Even Euclid would have felt maligned.) Eventually I escaped to 
England to discover that projective geometry could include cubic surfaces and, 


