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In conclusion, the author's presentation is attractive and lucid, quite suitable 
for a graduate level course on spherical functions with applications to special 
functions. However, for a modern unified approach to special functions based 
on group theory, one should look elsewhere. 

REFERENCES 

1. Antoni Wawrzyhczyk, Wspólczesna teoria funkcji specjalnych, PWN, Warszawa, 1978. 
2. N. J. Vilenkin, Spetsiyalnye funktsii i teoriya predstavlenii grupp, Izdat. "Nauka", Moskva, 

1965, English transi, in Special functions and the theory of group representations, Monographs, vol. 
22, Amer. Math. Soc., Providence, R. I., 1968. 

3. J. Talman, Special functions: a group theoretic approach, Benjamin, New York, 1968. 
4. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. 
5. , Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, 

1978. 
6. W. Miller, Lie theory and special functions, Academic Press, New York, 1968. 
7. T. Inoui, Unified theory of recurrence formulas, Progr. Theoret. Phys. 3 (1948), 169-187, 

244-261. 
8. L. Infeld and T. Hull, The factorization method, Rev. Modern Phys. 23 (1951), 21-68. 
9. T. Koornwinder, The addition formula for Jacobi polynomials and spherical harmonics, SI AM J. 

Appl. Math. 25 (1973), 236-246. 
10. , Two variable analogues of the classical orthogonal polynomials, Theory and Applica

tion of Special Functions (R. Askey, éd.), Academic Press, New York, 1975, pp. 435-495. 
11. , J acobi functions and analysis on noncompact semi-simple Lie groups, Special 

Functions: Group Theoretical Aspects and Applications (R. Askey, T. Koornwinder and W. 
Shempp, eds.), Reidel, Dordrecht, Holland, 1984, pp. 1-86. 

12. R. Askey and J. Wilson, A set of orthogonal polynomials that generalize the Racah coefficients 
or 6 -j symbols, SIAM J. Math. Anal. 10 (1979), 1008-1016. 

13. D. Stanton, Orthogonal polynomials and Chevalley groups, Special Functions: Group Theoret
ical Aspects and Applications (R. Askey, T. Koornwinder and W. Shempp, eds.), Reidel, 
Dordrecht, Holland, 1984, pp. 87-128. 

14. W. Miller, Symmetry and separation of variables, Addison-Wesley, Reading, Mass., 1977. 
15. S. Helgason, Lie groups and symmetric spaces, Battele Rencontres (C. M. De Witt and J. A. 

Wheeler, eds.), Benjamin, New York, 1968. 

WILLARD MILLER, JR. 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 13, Number 1, July 1985 
© 1985 American Mathematical Society 
0273-0979/85 $1.00 + $.25 per page 

The umbral calculus, by Steven Roman, Academic Press, Orlando, FL, 1983, 
x + 193 pp., $35.00. ISBN 0-12-594380-6 

The umbral, or symbolic, notation was originated by Aronhold and Clebsch 
in the middle of the nineteenth century and proved to be an important tool in 
the theory of algebraic invariants. It was later taken on by BHssard, who 
applied it to derive various algebraic and combinatorial identities. 

The idea behind the umbral notation is to start with an algebraic identity 
involving powers {ak}, {bk} and replace ak <- ak, bh <- bk, where {ak}, {bk} 
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are now arbitrary sequences. Perhaps the simplest use of the umbral method is 
to derive the following pair of inverse relations: 

(1) am- t(n
k)bk9 bn= i(-iy-k(n

k)ak. 

Let a = b + 1; then b = a — 1, and we have 

a" = (6 + 1)", b" = (a-l)n. 

Thus 

«"-£(£)**. *"-E(-D""*(ï)«*. 
Now replace a" «- ÛW, 6" «- Z>„ and get (1). 

Although the symbolic notation proved to be very effective, there were many 
doubts as to its legitimacy, and Cayley, for example, had to resort to differen
tial operators and "hyperdeterminants" to convince himself of its validity. 
Much later, E. T. Bell, in 1941, proposed a rigorous foundation to the umbral 
calculus which, though valid, was rather contrived. It was only in the early 
1970s that Gian-Carlo Rota came up with a truly convincing explanation of 
the umbral calculus. We will illustrate it by rederiving (1) the Rota way. 
Introduce linear operators A, B on the vector space of polynomials p(z) 
defined on the basis [zn] by A(zn) = an, B(zn) = bn. Then 

a„ = L("k)bk - A(z") = L(l)B(z') = B(z("ky) = B((z + 1)"). 

By linearity, for every polynomialp(z), 

A(p(z)) = B(p(z + l)). 

Thus 

B(p(z)) = A(p(z-l))9 

and, in particular, 

bn = B(z') = A((z - 1)") = A(U-ir~k(n
ky) 

-I<-i)"-*(ïH**)-£(-i)""(ï)«*. 
A sequence of polynomials {pn(x)} is of binomial type if it satisfies a 

" binomial theorem" 

P„(x +>>) = L[n
kjPk(x)Pn-k(y)' 

Given a sequence of binomial type/?„(*), a sequence of polynomials {sn(x)} 
is said to be Sheffer with respect to { pn(x)} if 

n In\ 
sn(*+y)= Y,[k)Pk(y)5n-k(x)-
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The Rota-Roman umbral calculus, the subject matter of Steve Roman's 
book, is a new approach to the theory of Sheffer sequences. Its novelty is in 
that, unlike Sheffer's analytical treatment, it is purely algebraic, residing on the 
notion of the umbra—that is, of linear functional on the vector space of 
polynomials. To describe their approach we need some more of their notation. 

There is a 1-1 correspondence between linear functional on the vector space 
of polynomials, defined on the basis by L(zn) = an and formal power series 
ƒ(/) = Hantn/n\. Roman actually identifies the two notions and represents 
linear functional by their formal power series. Roman and Rota's definition of 
Sheffer sequences is surprisingly simple and elegant. Let f(t) and g(t) be linear 
functional such that /(O) = 0, g(0) =É 0. Then the Sheffer sequence {sn(x)} 
corresponding to ( ƒ, g) is given by the orthogonality condition 

g(t)f(t)k(s„(z)) = »!«„>t. 

Starting with this definition, Rota and Roman show that all other properties of 
Sheffer sequences follow. In particular, the generating function 

y sk(y} tk = I ey/(t) 

h " *(/(o) ' 
where/(O is the inverse power series off(t): f(f(t)) = t. 

Steve Roman's book is an exceptionally clear and self-contained exposition 
of this elegant theory. The first three chapters deal with the theory itself. The 
fourth chapter gives many interesting examples that nicely illustrate the wide 
scope of the theory, and Chapter 5 has "topics". Two of these topics are 
particularly noteworthy. §5.1 gives a full treatment of how to determine the 
"connection coefficients" cnk of two given Sheffer sequences {sn}, {rn }, 

n 

k = 0 

and §5.5 gives a nice account of "inverse relations" (the most simple example 
of which was described above). It is amazing that the umbral calculus can 
handle all the inverse relations in Riordan's [4] famous book. 

The final chapter, Chapter 6, deals with nonclassical umbral calculi which 
are analogues for which {«!} is replaced by other sequences. 

My only reservation about this charming little book is that it almost solely 
concentrates on research in which the author himself took part. Such im
portant work as Joni's [3] multivariate Lagrange inversion is only listed in the 
bibliography, and the significant contributions of the Italian school [1] did not 
even make it to the bibliography. 

To conclude this review let me try and put the umbral calculus in historical 
perspective. Euler and his contemporaries manipulated power series "formally" 
without worrying much about convergence. This changed when Cauchy and 
Weierstrass developed rigorous notions of convergence, and, ever after, 
mathematicians were very uptight about convergence. Only relatively recently 
has it been realized that, in many cases, Euler was right after all, and that most 
manipulations in power series can be thought of as taking place in the 
(perfectly rigorous) algebra of formal power series. Even today this fact is not 
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fully realized, and many authors still pay lip service to convergence. The 
umbral calculus, being purely algebraic, was a major force in shattering the 
idol of convergence. Ironically, the new insight that it afforded us provides us 
with the hindsight to realize that, by now, it is partly superfluous, and that 
many of its results can be proved directly in the framework of formal power 
series without the intervention of " umbra". For example, Chapter 3 culminates 
with a theorem that is equivalent to the famed Lagrange inversion formula. 
The Lagrange inversion formula, traditionally belonging to analysis, is now 
fully realized to be a purely algebraic fact, and a very short algebraic proof can 
be found, for example, in Hofbauer [2]. 

But even if it is true, as some people claim, that everything that the umbral 
calculus can do can be done faster with just formal power series, nobody can 
deny the elegance, insight, and sheer beauty that the umbral calculus possesses, 
and Steve Roman's book is an excellent account of this beautiful theory. 
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Theory of function spaces, by Hans Triebel, Monographs in Mathematics, Vol. 
78, Birkhàuser Verlag, Basel, 1983, 284 pp., $34.95. ISBN 3-7643-1381-1 

The paradox of Besov spaces is that the very thing that makes them so 
successful also makes them very difficult to present and to learn. The idea 
behind Besov spaces begins with a simple extension of the idea of Lipschitz 
continuity, augmented by the observation that higher-order differences must 
also be used. For s > 0 choose any integer k greater than s. Differences are 
defined inductively. The first difference of a function is f(x + h) - f(x) 
(x e R"), and the kth difference is the composition of the (k — l)st and the 
first difference and is denoted A .̂ Let F(x, h) = àk

h f(x)/\h\s. The Besov space 
norm of ƒ is the Lp norm of F in x followed by the Lq norm in h with respect to 
the measure dh/\h\n. A function is in B5 if ƒ is in Lp and its Besov space norm 
is finite. 

It was quickly found that there were many alternative approaches which give 
these same spaces. Today it is known that spaces defined by degree of 
approximation by entire analytic functions, spaces of functions which are 
values at 0 of solutions of the heat equation or Laplace's equation subject to 


