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small and the symbols insufficiently varied. The first edition is much easier to 
read; but the present one is even more worth reading. It gives a very good 
account of its subject, and its title is well deserved. 
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One hundred years ago there appeared in New York a book by William K. 
Clifford [7] containing the following passages: 

(i) Our space is perhaps really possessed of a curvature varying from point to 
point, which we fail to appreciate because we are acquainted with only a small 
portion of space... 

(ii) Our space may be really same (of equal curvature), but its degree of 
curvature may change as a whole with the time... 

(iii) We may conceive our space to have everywhere a nearly uniform 
curvature, but that slight variations of the curvature may occur from point to 
point, and themselves vary with the time... We might even go so far as to 
assign to this variation of curvature of space 'what really happens in that 
phenomenon which we term the motion of matter'. 

It is impressive and moving to read this intuitive description of the funda
mental ideas of the theory of general relativity written over thirty years before 
Albert Einstein gave the theory its final form. The subtle relations between 
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physics and geometry have always influenced the heartbeat of mathematics; a 
recent case is the discovery of exotic differentiable structures on R4 [9]. 

The theory of general relativity has been, from its very beginning, a source 
of inspiration and the subject of interest to many mathematicians. David 
Hubert and Hermann Weyl became fascinated with the idea of geometrizing 
all of fundamental physics. Weyl proposed to unify gravitation with electro-
magnetism in terms of a conformai geometry and a connection; he referred to 
conformai changes of the metric tensor as "gauge transformations". With the 
advent of quantum theory, Weyl's gauge transformations acquired a new 
interpretation: they now correspond to changes of sections of a principal 
£/(l)-bundle over spacetime. The information about electromagnetism is en
coded in the connection form on the bundle. Elie Cartan [4] analyzed the 
geometrical structure of Newtonian and relativistic gravitation. In the course of 
this analysis, he introduced torsion, a new differential-geometric concept, and 
conjectured, several years before the discovery of spin, that torsion is related to 
the intrinsic angular momentum of matter. These ideas have been rediscovered 
by physicists [20, 37] and, recently, absorbed into the " theory of supergravity" 
[8, 11]. In their work on physical problems, Weyl and Cartan were led to 
generalize the notion of a linear connection, as introduced by Tullio Levi-Civita. 
In fact, Cartan's article [4] contains an intuitive description of the general 
notions of fiber bundles and connections. Chen Ning Yang and Robert L. 
Mills [42] generalized the concept of an electromagnetic field by considering 
gauge transformations with values in a non-Abelian Lie group. It soon became 
clear that their "gauge fields" are connections on principal bundles. Gauge 
theories are now considered to provide the most promising framework for a 
unified description of fundamental forces. 

The first two decades of the development of general relativity theory were 
devoted to a derivation of its simplest physical consequences concerning the 
propagation of light in gravitational fields and the corrections to the Newto
nian theory of planetary motion. A. Friedmann [12] discovered cosmological 
models of the Universe, characterized by a curvature constant in space and 
varying with time, as presaged by Clifford. Most of the work done in that 
period involved, as far as mathematics are concerned, only local differential 
geometry and simple approximation methods. Probably the first indication 
that finer mathematical tools may be needed in general relativity occurred in 
connection with the study of gravitational waves by Albert Einstein and 
Nathan Rosen [10]. Somewhat to their surprise, they found "singularities" in 
the solutions representing plane gravitational waves. There are no analogous 
singularities in plane electromagnetic waves. Only in the 1950s, thanks to the 
work of Hermann Bondi, Felix Pirani and Ivor Robinson [2] had it become 
clear that these singularities are connected with a particular choice of local 
coordinates. Physicists began to realize the need of a precise notion of 
spacetime as a differentiable manifold with additional structures satisfying 
suitable regularity assumptions. The monograph by André Lichnerowicz [23] 
played in this respect an essential role: it contained the first formulation of the 
foundation of general relativity in the language of the modern theory of 
differentiable manifolds. Differential topology made an impact on relativity 
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through the work of Roger Penrose, Stephen Hawking and Robert Geroch [13, 
18, 28, 30]: to the surprise of many physicists, they showed that real singulari
ties occur in generic models of spacetime as a result of gravitational collapse 
accompanying the formation of black holes and the large-scale evolution of the 
Universe (big-bang). Global, geometric ideas have been essential for the 
analysis of the notion of a black hole and the study of its properties. 

Kurt Gödel [14] and Abraham Taub [38] introduced methods of Lie group 
theory into cosmology. The rotating Gödel universe shattered several precon
ceived ideas among relativists: in this model, the local definition of inertial 
frames does not agree with the global one, based on observations of distant 
galaxies. There are also there closed time-like lines, and, therefore no Cauchy 
hypersurfaces. GödePs idea to construct the metric of a spatially homogeneous 
Universe from the Maurer-Cartan forms of a suitable Lie group has been used 
in a systematic study of cosmological models; cf. the work of Istvan Ozsvàth 
and Engelbert Schücking [27] as well as numerous references listed in [21]. 

During the last thirty years, there has been enormous progress in general 
relativity. It was stimulated by discoveries in astrophysics and the development 
of new experimental methods; it was made possible by the application of new 
mathematical ideas and tools. Relativistic gravitation has strengthened 
its—previously rather weak—links to the rest of physics. For a theoretician, 
the following areas of recent research are especially interesting: gravitational 
waves and radiation; exact solutions of Einstein's field equations; causal 
structure and the Cauchy problem; endeavors to establish a quantum theory of 
gravitation; black hole physics; creation of particles near black holes and their 
thermodynamics; proofs of positivity of the total energy of an isolated gravitat
ing system; inflationary cosmology; "supergravity" and renewed attempts to 
unify gravitation with other elementary forces (generalized Kaluza-Klein theo
ries and models based on "strings"). Many of these topics are well summarized 
in the book by Robert Wald. 

To give the reader a feeling for the type of mathematics that has been 
developed in the course of work on general-relativistic problems, I shall briefly 
describe what is now called the optical geometry [39]. It arose in connection 
with the research on gravitational waves and exact solutions; it is a close 
relative—perhaps a stepchild—of Roger Penrose's twistor program [32]. The 
origins of optical geometry may be traced back to Harry Bateman [1] and Elie 
Cartan [3]. This geometry has been developed by Ivor Robinson [34], Joshua 
Goldberg and Ray Sachs [15], Roy Kerr and Alfred Schild [19], E. Ted 
Newman and Roger Penrose [25], and many others [21]. Hans Stephani's 
monograph contains a good account of the most important achievements in 
this field. 

Consider—as a model of spacetime—a four-dimensional oriented differen
tiate manifold Af, of class C00 or Cw, together with a pair ( Jf, Se) of real line 
bundles such that J fc TM, Sec T*M and, if Xx and S£x denote, respec
tively, the fibers of Jf and S£ over x e M, then 

u J a = 0 for any u e Xx, OL^S£X and x e M. 

The bundle Jf defines on Af a one-dimensional foliation, i.e., a congruence of 
curves. A section k of Jf-> Af is a vector field on Af; let (4>t(k)), t e R, 
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denote the flow generated by k. A section X of «£?-» M is a field of one-forms 
on M; for any such sections k J X = 0. A metric tensor g on M is said to be 
adapted to ( Jf, JP) if, for any such sections k and X, one has g(k) A X = 0, 
where g(/c) is the one-form characterized by / J g(k) = g(k, /) for any vector 
field /. The elements of the bundles X and ££ have vanishing squares with 
respect to any adapted metric tensor; for this reason they are said to be "null". 
If Sa is invariant with respect to the flow (<t>t(k)), then it is also invariant with 
respect to (<J>,(pk))9 where p is any function on M. It is meaningful, therefore, 
to define S£ as being invariant with respect to Jf if, for any sections k and X, 
one has 

X A LkX = 0, 

where LkX denotes the Lie derivative of X in the direction of k. It is easy to 
prove that the invariance of S£ with respect to J f is equivalent to the 
statement: The congruence of curves defined by Jf consists of null geodesies 
relative to the Levi-Civita connection corresponding to any metric tensor 
adapted to ( Jf, <£?). An electromagnetic field is described by a two-form F on 
M. Such a two-form is said to be adapted to ( Jf, J£?) if 

k J F = 0 and X A F = 0. 

A part of Maxwell's equations is contained in dF = 0. Writing the other part 
requires the introduction of the Hodge dual of F. Let * F denote the dual of 
F relative to the metric tensor g. If both g and F are adapted to ( Jf, ££ ), then 
so is * F. 

Let J / denote the set of all Lorentzian metrics on M, adapted to ( Jf, «£?). If 
F # 0 is adapted and g,g'Gsf, then * g JF = * g, F defines an equivalence 
relation R in s/. This equivalence relation does not depend on F. An optical 
geometry on M consists of the pair ( Jf, «£?) together with an element £% of 
s//R. It is easy to see that if g e <% c j * ' then g' e ^ if there is a nonvanish-
ing function p on M, and a one-form f such that 

g' = pg + f ® X -h X ® f, 

where X ¥= 0 is a section of oS?-» M. Let M and M ' be two 4-manifolds with 
optical geometries (Jf, Sf, @) and (Jf ', SP', @'\ respectively. A diffeomor-
phism ƒ: M -» Af ' is an isomorphism of optical geometries if ƒ *# ' = J*, 
ƒ *J£?/ = «£? and />JT = Jf'. According to I. Robinson [34], an optical geometry 
on M admits a nonzero, adapted solution of Maxwell's equations if the flow 
(<j>t(k)) consists of optical automorphisms for any section k of Jf-> M. In the 
physicist's terminology, the congruence of null geodesies generated by Jf is 
then said to be without shear; by a convenient abuse of language one also says 
that the optical geometry is shear-free. Optical isomorphisms can be used to 
transform one adapted solution of Maxwell's—or Yang-Mills'—equations into 
another. 

An alternative definition of optical geometry is as follows: consider the 
bundle ker &-* TM. The quotient J f= (ker«^)/Jf is a real plane bundle and 
88 defines on it a conformai, positive-definite structure. If, moreover, 3tf is 
oriented, then it becomes a complex line bundle over M. Conversely, if 
( JT, £? ) is as above and J^= ( k e r ^ / J f is a complex line bundle, then this 
structure determines an optical geometry. 
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An optical geometry can be equivalently defined as a G-structure on M, 
where G is a 9-dimensional subgroup of GL(4,R). This G-structure is locally 
flat if, and only if, the bundle ker«£? is integrable, i.e., X A dX = 0, and the 
optical geometry is shear-free [35]. 

Assume now that the set of all curves generated by X determines a fibration 
of M so that the quotient space Af/Jf is a 3-manifold N. If the optical 
geometry on M is shear-free, then N inherits from M the structure of a 
CR-manifold [6, 31, 41]. In particular, the complex line bundle 3%* descends to 
a subbundle of TN. The simple case of N = S3 a C2 corresponds to an optical 
geometry studied by I. Robinson [29]. In this case, the complex line bundle 
^ - > S3 coincides with the pull-back of the tangent bundle to CPX by the Hopf 
map S3 -> CPp The CR-structure on S3 defines a shear-free and nonintegrable 
(" twisting") optical geometry on the compactified Minkowski space M = Sx X 
S3. A conformai embedding of Minkowski space R4 into M can be used to pull 
this geometry back to R4. This Robinson geometry is induced on R4 by 

k = 9 /9Ü, X = du + xdy - ydx 

and 

g = X ® dv + du ® X -(v2 + l)(dx ® dx + dy ® dy), 

where (x, y, w, v) are coordinates. The two-form F = Re 0, where 

$ = f\ A dz, z = x + iy and ƒ : R4 -* C, 

is adapted to the optical geometry under consideration. The Maxwell equations 
for F read d$ = 0 and are equivalent to df/dv = 0 and the Lewy equation 
[22], z(df/du) + 2i(df/dz) = 0. The local geometry of this electromagnetic 
field is similar to that of plane waves, but, in the present case, the amplitude ƒ 
is an analytic function of u, whereas plane waves may very well be merely 
smooth. The correlation between analyticity and twist follows also from the 
general theory of foliations: according to André Haefliger [16] and Sergei P. 
Novikov [26], a compact manifold with a finite fundamental group admits no 
analytic foliation of codimension one. Therefore, an optical geometry on R4 

which extends to a real-analytic optical geometry on the compactified Minkow
ski space is necessarily nonintegrable [35]. 

Several excellent textbooks and monographs on general relativity, and 
associated topics, have appeared in recent years [5, 17, 21, 24, 33, 40]. The 
book by Theodore Frankel is a short introduction to the subject, with emphasis 
on intrinsic methods and the geometrical significance of Einstein's equations. 
There is a fairly detailed presentation of cosmology and of spherically symmet
ric gravitational fields, but black holes, gravitational collapse and waves are 
just mentioned. There is no reference to the Kerr metric, gravitational radia
tion or quantization. The other two books under review give a more compre
hensive treatment of the subject. They both use—with skill—the traditional 
tensor calculus and local differential geometry. However, Wald introduces, in 
an Appendix, differential forms, the de Rham cohomology and states the 
theorems of Frobenius and Stokes. When confronted with the problem of 
defining spinor fields over a Riemannian space, he recognizes the need to 
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introduce the notion of a fiber bundle. Besides a nice presentation of the 
standard material, Stephani's book contains a valuable chapter on exact 
solutions of Einstein's equations. Wald's volume is the last, among the three, to 
have been written. It is the most up-to-date and gives a thorough introduction 
to the theory of general relativity. It contains much material that is otherwise 
not available in book form. It is intended to serve as a text for graduate 
students and a reference book for researches; it may be recommended as such. 
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