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it is more useful for learning the essentials of the subject than for gaining an 
overview of the state of the subject at the present time, despite the multitude of 
asides and context-placing references. The main thrust of the book is to work 
up from the idea of the index of a Fredholm operator on Hubert space, 
through the introduction of pseudo-differential operators to the second proof 
of the index theorem, yielding the index in K-thtory. The organization of the 
material is generally good, with theories and techniques brought in for the 
attainment of specific goals and not for their own sake. One slight hiccup in 
the linear organization is that ^-theory gets defined twice, and if we include 
the gauge-theoretic section, Sobolev spaces on manifolds are defined twice also 
(and in different ways!). Nevertheless, the book provides a proof of the index 
theorem and a good description of what it can do. 

Times move on, of course, and the more recent proofs of the index theorem 
which are motivated by supersymmetry provide a rationale for the role which 
functions like x/(l — e~x) and x/ tanhx play in sorting out the combinations 
of characteristic classes which occur in the index formula. By now workers in 
partial differential equations, stochastic processes, Riemannian geometry, alge­
braic geometry, algebraic topology and mathematical physics all have the index 
theorem doing something for them. In another twenty years the list will almost 
certainly be longer. 

Like Stonehenge, the theorem stands there as an immovable edifice, with 
each generation giving its own interpretation. For one it is a computational 
device, for another a more mystical representation of supersymmetry. Either 
way, it has created a bridge between mathematics and physics and has given 
mathematicians and physicists a deeper, or at least more sympathetic, under­
standing of each other's work. The Dirac operator will never be reinvented a 
third time! 

NIGEL J. HITCHIN 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 15, Number 2, October 1986 
©1986 American Mathematical Society 
0273-0979/86 $1.00 + $.25 per page 

Sequence transformations and their applications, by Jet Wimp, Mathematics in 
Science and Engineering, vol. 154, Academic Press, 1981, xix + 257 pp., 
$38.50. ISBN 0-12-757940-0 

In this volume the author restricts himself mostly to material on sequence 
transformations which has not appeared in book form in English. Some of the 
material is available in French (Brezinski, 1977, 1978), but much of the 
material has never appeared in book form in any language. Some has not 
appeared in published papers [the thesis work of Higgins (1976) and Germain-
Bonne (1978) for instance], and much is new altogether. 

The subject of this book touches virtually every area of analysis, including 
interpolation and approximation, Padé approximation, special functions, con­
tinued fractions, and optimization methods, to name a few. 
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Two types of sequence transformations are considered. 
The first type is a transformation T mapping each sequence s = {sn} = 

(s09s1,s2,-..) in a Banach space B (usually the complex field C or the real 
field R) into a sequence / = T[s] = (f0, tv t2,...), also in B. The sequence s 
may be the «th partial sums of a series, i.e., sn = a0 + ax 4- a2 + • • • +**„, 
« > 0, or may arise by various other means. 

The main objective in the theoretical development of this book is to compare 
the convergence of / with that of s as concerns regularity and accelerativity of 
T. In particular, (1) if s converges to s*9 does t also converge to s*, i.e., is T 
"regular" for s9 and (2) if T is regular for s9 does / "converge more rapidly" 
than s, i.e., does T "accelerate the convergence" of sy d[tn, s*] = o{d[sn9 s*]). 
Here d is the metric induced by the norm in our Banach space B. 

When considering acceleration from the theoretical viewpoint, the emphasis 
is not on individual sequences but rather on classes of sequences. Ap­
propriately, if a transformation T accelerates the convergence of each sequence 
in such a class, T is said to accelerate that class. 

In practice, a particular class of sequences may be initially at hand and a 
corresponding transformation T is devised by some scheme to accelerate this 
class. One problem then considered is to characterize the largest class, say 
"acc(7)," accelerated by T; but this may be difficult to do. This situation 
might well arise if T is "exact" for a certain class C* of convergent sequences, 
which means that for each member s of C* we have /„ = s*9 n > 0. 

An associated problem which may be more tractable is: given two transfor­
mations T and 7", determine if one of the two classes acc(T) and acc(r r) is a 
subset of the other class. This problem becomes significant in computer 
applications when more than one transformation is available for accelerating 
the convergence of sequences and limited information about these sequences is 
available ahead of time. 

In numerical applications, the interest is not in the fact that T accelerates 
the convergence of a sequence s (or a class of sequences), but rather in using 
one of the first few terms of the sequence t = T{s) to obtain an acceptable 
approximation to s*. This seems to be a somewhat paradoxical situation, since 
the condition that T accelerate the convergence of s implies nothing directly 
about the values of the first few terms of t. Of course, one way to deal with this 
situation for a real sequence {sn} is to obtain sharp upper and lower bounds 
on at least the first few terms of the sequence {s* — sn). We will return to this 
situation near the end of the review. 

In order to obtain an acceptable approximation to s*, the numerical analyst 
typically may only use the values of tn for, say, n < 10. This has at least been 
true without the availability of high-speed computers. Very often the tn with 
the largest value of n, in our case n = 10, gives the best approximation of 5*. 

If this approximation is not acceptable, the transformation T may be 
applied to t and the first few terms of T[t] may be considered. This process 
may be repeated a few times until, hopefully, an acceptable approximation to 
5* is obtained. Since only the first few terms of s are used, this repetitive 
process must cease after a small number of applications of the transforma­
tion T. 
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Rather startling results have been obtained by this repetitive process for 
"slowly convergent" sequences. In particular, the first few terms of a sequence 
s may not even approximate its limit 5* to one decimal place and the millionth 
term of s might be the first term to give an approximation accurate to, say, six 
decimal places. On the other hand, starting with only the first few terms of s 
and carrying out this repetitive process a few times, an approximation accurate 
to six decimals may well result. Consequently, the first few terms of s may 
inherently contain a considerable amount of information about s* while each 
of these terms taken individually does not, and the problem is to extract this 
information from these first few terms. 

We now turn to the second type of transformation which assigns to each 
sequence s a countable set of sequences s(k9 ) = (s(k9 0), s(k9 1), s(k9 2) , . . . ), 
k > 0, by the use of a formula (called a "lozenge algorithm"). This set of 
sequences is used to form a double array {s(n9k)}9 «,& > 0, in which the 
element s(n9 k) appears in the (n 4- l)th row and (k + l)th column of the 
array. 

A lozenge algorithm of this type, called a "deltoid," is of considerable 
importance. For example, we may recursively set 

s(n9k + 1) = G[s(n + l9k)9s(n9k)]9 s(n90) = sn9 n9k>0. 

This recursive relation simply states that the terms of the sequence s are used 
to fill out the first column of the array, and that an element in a given column 
of the array is determined by two elements from the preceding column and 
from the appropriate rows as prescribed by the relation. Here G = G(x, y)is& 
function of two variables. In a similar situation with G = G(x9 y9 z) as a 
function of three variables, a " rhomboid" is produced. 

When dealing numerically with a transformation of the second type, a 
lozenge algorithm is sought which is "numerically stable," i.e., which will not 
break down in numerical appHcations because of the limited number of 
significant figures or decimal places that are being carried along in the 
computations. 

Along this same line, it becomes important to consider the computing time 
and storage space required by each algorithm when one or more algorithms are 
available for a given transformation. Indeed, as the author points out, the 
Trench algorithm which is a variant of the BH protocol surprisingly requires 
only one-third as many operations as the e-algorithm when used to generate 
the iterates [ek]n = s(n,k)oî the Schmidt transformation ek9 k > 0. 

Regularity and acceleration are considered for various sequences t9 each of 
which is made up of elements chosen from the array {s(n9k)} along any 
so-called "path." This requires that t0 = s(0,0) and, having selected a term for 
t from a location in the array, the following term for t must be chosen from 
the next column to the right or the next row downwards relative to this 
location and, at the same time, cannot be chosen from any column to the left 
or any higher row relative to this location in the array. If, from some point on, 
the terms for t are all chosen from some fixed column (row) of the array, the 
path is called " vertical" ("diagonal"). The word "diagonal" is used since the 
rows of the array are displayed diagonally downwards. 
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Both linear and nonlinear transformations are treated. 
The linear theory is initially based on the Toeplitz limit theorem specialized 

to transformations T: CS -> CS: s -* t which are linear transformations on 
CS, the space of complex sequences. In all practical situations for such 
transformations from CS to CS, the only possible linear transformation T may 
be defined by a lower triangular complex matrix U = [unk], unk = 0, h> n, 
where T[s] = t and 

n 

K= E «»A, « = 0,1,2,.... 
fc-0 

T or U is called a " triangle" if ££=o w^ = 1. 
The polynomial 

n 

Kir) = £ ii^r*, « > 0, 

called the "«th characteristic polynomial" of the triangle U, and a useful 
function, 

m(r) = limsuplP^r)!1/", 

called the "measure of U" are shown to be intimately related to the regularity 
and accelerative properties of U. 

The author discusses several important triangles, regular methods U applied 
to series with variable terms, and rational approximations. A number of linear 
lozenge methods are presented. Deltoids are investigated, along with quadra­
ture applications. It is also shown how rhomboids can be developed for 
orthogonal triangles. Chebyshev and Legendre polynomials are given as exam­
ples. Richardson extrapolation and Romberg integration are also included. 

Turning to the nonlinear theory, one cannot expect general lozenge algo­
rithms to satisfy a theory as simple and elegant as the linear theory, which was 
made possible by the Toeplitz limit theorem. 

Only recently has a beginning of a general theory been developed to 
encompass regularity and acceleration properties for various well-known non­
linear sequence transformations. Much of this work is due to Germain-Bonne 
(1973, 1978). It excludes some important algorithms and can only handle 
vertical convergence, i.e., convergence along vertical paths (Chapter 5). 

As an example, this theory partially handles the accelerativity property of 
Aitken's ô2-process A, defined by A(s) = / where 

(3) /„ = (snsn+2-(sn+1)
2)/(sn - 2sn+l + sn+2) 

or tn = sn whenever the denominator of this fraction is zero. 
Aitken's 82-process and related topics are given detailed attention (Chapter 

7). Various results from Tucker (1967, 1969) are included, but I feel that it 
would have been appropriate to include the following theorem from Tucker 
(1969). 

THEOREM. Let s be a member of CS such that for some r > 0 

(4) K+iAU < r < !> forn sufficiently large, 
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where a0 = s0 and an = sn — sn_l9 w > 1. Then A accelerates the convergence of 
siffA(an+l/an) = o(l). 

This theorem shows in particular that the condition 

fl« + A " r = ÖC0> \r\ < h 

is not necessary for A to accelerate the convergence of s. However, in the past, 
Aitken's ô2-process was usually not applied unless this condition was satisfied. 
More important, this theorem characterizes in a simple manner the largest class 
of complex sequences satisfying (4) which are accelerated by A. 

I have singled out Aitken's ô2-process at least partially because it serves as a 
prototype when studying regularity and, in particular, accelerativity of nonlin­
ear transformations, and since it has appeared so frequently in the literature 
since 1926. 

It also leads us in a natural manner to the Shanks-Schmidt ek transforma­
tion, k > 0, which is an important generalization of Aitken's 82-process for 
k > 2, and for which ex = A. Formula (3) may be written as the quotient of 
two determinants of order 2, and it is this form in which ek generalizes A as a 
quotient of two determinants of order k + 1. 

The author rightly refers to ek as the Schmidt transformation since Schmidt 
(1941) used the method to solve systems of linear equations by iteration. But 
his paper was neglected for some time, and the rediscovery of the method is 
due to Daniel Shanks, who resurrected the algorithm and discussed its re­
markable properties in a lengthy paper (1955). There he treated not only 
regularity and accelerativity, but also analytic continuation in the complex 
plane. 

A very important and useful generalization of the Schmidt transformation ek 

to sequences in a Banach space B is the Brezinski-Havie (BH) protocol Ek 

found in Chapter 10. Its deltoid computation [Ek(s)]n = s(n,k) is due to 
Havie (1979), while its representation by a ratio of determinants is due to 
Brezinski. It is important to note that the denominator of this ratio, being a 
scalar, does not require anything in the way of invertibility from elements of B. 

For scalar sequences, Ek is undoubtedly the most elegant and flexible 
computational procedure yet discovered for producing sequence transforma­
tions. The flexibility of this algorithm lies in the appropriate choices of the 
elements appearing in the determinants of the ratio mentioned above. Gener­
ally speaking, the choices are made with a foreknowledge of the kinds of 
sequences one wishes to accelerate. 

A few general comments are due at this time. This book brings together a 
large amount of recent results on regularity and accelerativity of transforma­
tions of sequences and integrals, and only a small, but fundamental, portion of 
the material in the book has been considered here. A considerable amount of 
notation is used, but this seems to be necessary because of the broad coverage 
of the subject matter. 

The present state of the art for many topics in numerical analysis involving 
sequence transformations is frequently indicated, along with open research 
problems. Consequently this book is a must for researchers interested in 
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regularity and accelerativity. My own preference of research has been consider­
ably broadened while reviewing it. 

The reader of this book should first acquaint himself with the notation. 
For example, when dealing with real sequences x and y, notations such as 
"xn < . >>n" (xn < yn for all sufficiently large n) and "xn < : yn" (xn < yn for 
infinitely many values of n), first used in Tucker (1963) and later in Tucker 
(1967, 1969), could make the subject matter completely opaque if not under­
stood. 

The bibliography is excellent, but a point of increase of a function is left 
undefined, as well as the standard notation "^(X, Y)" denoting the family of 
all functions from X to Y. Proofs are included only if they are either short or 
conceptually important for the discussion at hand. However, again because of 
the broad coverage of the subject matter, I feel that this is quite acceptable. 

As promised, we now return to the rather paradoxical situation, occurring 
not infrequently in the general literature, where the convergence of a real 
sequence s is initially shown to be accelerated by a transformation T, and then 
the first few terms of s and t = T[s] are exhibited to show the improved 
approximation to the limit s* of s by tn over sn for small values of n; but only 
by also displaying a "predetermined" accurate approximation of s*. 

Since the value of s* is usually unknown, what is really needed in the case 
of a convergent real sequence s are "sharp" upper and lower bounds on at 
least the beginning terms of the sequence {s* — sn). It is preferable to have 
such bounds on all of the terms of this sequence in the form bn < s* - sn < cn, 
n > 0, along with the added conditions that qn = (cn- bn)/\s* - sn\ -> 0 and 
qn be near zero even for small values of n. Finding such bounds may be very 
difficult to do. The book under review might well have included results from 
Pinsky (1978) and Johnsonbaugh (1979) which consider this problem for 
alternating series. 

With the conditions in the preceding paragraph being met, we are able to 
obtain two desired objectives when dealing with a slowly convergent real 
sequence s. Namely, furnishing (a) accelerative transformations T and (b) 
accompanying sharp upper bounds for the terms of the sequence {\s* — tn\) 
which may be used for " small" values of n in numerical applications. 

A procedure to obtain these objectives is, of course, to choose any sequence 
{hn} such that bn < hn < cn, n > 0, and define the transformation T by 
setting 

[T{s)\n = tn = sn + hn, n>0. 

We then have 

\s*~tn\^cn-bn9 n>0, 

and 

\s* - tH\As* ~ sn\ < qn -> 0, 

i.e., t accelerates the convergence of s. With "all" terms of the sequence q 
sufficiently near to zero, we have obtained the desired objectives (a) and (b). 

Kummer (1837) showed how to carry out that part of the above procedure 
dealing with the beginning terms of the sequence {sn} of partial sums of a 
positive term series a0 + ax + a2 + • • • . A general theory for the convergence 
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of alternating series (i.e., if an + 1/an < 0, n > 0) is given in Tucker (1963) and 
Tucker (in preparation). In principle, this general theory can be used to carry 
out the above procedure in its entirety for the sequence of partial sums of 
"any" convergent alternating series. 

In particular, the error analysis resulting from this general theory for 
alternating series can be used to derive Aitken's ô2-process, and also to explain 
its success as concerns the previously cited objectives (a) and (b) when applied 
to the partial sums of many slowly convergent alternating series. In fact, it was 
my attempt to explain the success of this process when applied to such a series 
which initiated my research on sequence transformations and led me to a 
general theory of convergence for alternating series. 

A rather isolated theorem is proven in Calabrese (1962) which gives upper 
bounds for the absolute values of the sequence of remainders s* — sn of an 
alternating series which are an improvement over the usual bounds found in 
most calculus textbooks (see, for example, [12, p. 587]). But there appears to be 
an error in the proof which I believe has never been noted until now. In 
particular, the erroneous property is used that in "every" (convergent) alternat­
ing series the limit (i.e., the sum of the series) must lie between any two 
successive (partial) sums. Fortunately, it can be easily shown under the 
hypotheses of the theorem in question that this property does hold. 

Valid proofs of the Calabrese result appear in both Pinsky (1978) and 
Johnsonbaugh (1979). These two papers, the latter in particular, also contain 
much improved results for approximating the sums of slowly convergent 
alternating series. However, most of the analysis in each of these three papers 
depends upon the hypothesis that the sequence {\an\} is decreasing, along with 
other restrictions. Eventually some of these neglected results should appear in 
elementary calculus textbooks. Boas (1978) obtains similar results, but prim­
arily for series of positive terms. 

The general theory of alternating series previously mentioned above makes 
no restrictions other than that the alternating series be convergent. This general 
theory has yet to be fully exploited. As far as I know, there is no general theory 
for real series which is analogous to this general theory for alternating series. 
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Linear turning point theory, by Wolfgang Wasow, Applied Mathematical 
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The transitions of solutions of a linear differential equation from oscillatory 
to exponentially growing or exponentially decaying behavior as the indepen­
dent variable, for example, changes sign are phenomena of interest to physi­
cists and other scientists, primarily in the past sixty years, and continuing even 
today. The simplest equation exhibiting such behavior is Airy's equation 

(A) / ' + xy = 0, 

obtained from his study of the rainbow [2]. If we set x = [\p(0)e~2]l/3t, then 
the rainbow equation (A) becomes 

(A*) e2d2y/dt2 + txp(0)y = 0, 

which might well be expected to have solutions close to solutions of the 
equation 

( A # ) e2d2y/dt2 + t^(t)y = 0 (^(0) * 0). 

This idea occured to R. Gans in 1915 [6] in his investigations of total reflection 
in physical—as opposed to geometrical—optics. The point / = 0 is called a 
(simple) turning point, one where solutions of (A#) change from oscillatory to 
exponential behavior. An obvious mathematical question, only answered much 
later by R. E. Langer [8, 9] and others, is whether one can find changes of 
variables in (A) such that (A#) becomes (A*) with ^(0) = 1 and with a small 
error term included. If the transformation from (A#) to A(*) is exact, it turns 
out that often it is but a formal power series in e with coefficients holomorphic 
in the complex variable x, i.e., an asymptotic series which converges only for 


