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Hardy space theory has its classical origins in the work of G. H. Hardy and 
the brothers Riesz, but the modern origins of the subject begin with the 
theorem of A. Beurling in 1949. The Hardy space H2 is defined to be the space 
of functions ƒ analytic on the unit disk such that 

| |/ | |! = s u p { ^ jf2* | / ( « " ) l 2 * : 0 < r < l j < oo. 

The theorem of Beurling asserts that any such ƒ has an inner-outer factoriza­
tion ƒ = bg where b is an inner function and g is an outer function. By 
definition an inner function is a function analytic on the unit disk whose 
nontangential boundary values have modulus 1 almost everywhere on the unit 
circle. An outer function can be defined as the solution of the extremal 
problem of finding the function g in H2 that maximizes |g(0)| among all 
functions with \g(eu)\ equal to a prescribed function on the boundary. Both 
inner functions and outer functions have finer structure; an inner function can 
be factored further as the product of a Blaschke product and a singular inner 
function while an outer function is characterized by having an integral repre­
sentation of a certain form. It was recognized already by Beurling that this 
purely function-theoretic result has connections with operator theory. Indeed, 
from this theorem one can classify all the closed invariant subspaces for the 
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operator Mz of multiplication by z on H2. One also sees that the smallest 
closed invariant subspace containing a given function ƒ is bH2 where b is the 
inner factor of ƒ, and thus ƒ is cyclic if and only if ƒ is outer. 

It is now known how to put all this material in abstract purely operator-
theoretic terms. The operator Mz is a concrete instance of a unilateral shift 
operator on an abstract Hilbert space H (Le., a linear isometry S such that 
f]n>0S

nH = (0)) having a cyclic vector. The cyclicity requirement can be 
dropped if one considers vector-valued versions of H2. The theory is enriched 
by the fact that there are other interesting and seemingly different concrete 
instances of abstract shift operators besides Mz on H2. The wandering-
subspace proof of the Beurling theorem (specifically, the aspect of characteriz­
ing invariant subspaces), due to P. Halmos and independently to J. Rovnyak in 
the early 1960s, uses only Hilbert space geometry and makes perfectly good 
sense in the setting of abstract unilateral shifts of arbitrary multiplicity. As a 
consequence it picked up the matrix-valued version of Beurling's theorem done 
in the meantime by P. Lax. 

The two main applications of this "abstract shift analysis'* framework 
discussed in the book under review are interpolation and factorization. We 
reverse the order in the book and discuss factorization first. Two types of 
factorization are discussed, the inner-outer factorization of a function in H°° 
already mentioned and the spectral factorization of a nonnegative function on 
the unit circle. For simplicity we discuss the approach for the classical case, but 
the point is that this abstract approach works equally well for matrix- and 
operator-valued functions. In abstract form, one thinks of an H°° function ƒ 
as an analytic S-Toeplitz operator A = Mf of multiplication by ƒ; here by "A 
is analytic S-Toeplitz" we simply mean that AS = SA. One can then apply the 
invariant subspace representation form of the abstract Beurling theorem to the 
subspace AH2 to prove an abstract inner-outer factorization theorem for 
analytic S-Toeplitz operators. The problem of spectral factorization in general 
is the following: we are given a positive semidefinite operator function W(eu) 
and seek a representation as w\elt) = A^yA^e1*) where A is an operator-
valued outer function. For the scalar case, by the classical theorem of Szegö 
such a factorization is possible if and only if log|W| is integrable on the unit 
circle; for the operator-valued case of course the solution cannot be so simple. 
To use the abstract framework for this problem, assume that W is bounded 
and introduce the Toeplitz operator T = Tw: f -> P{Wf) on H2; here P is the 
orthogonal projection of L2 of the unit circle onto H2, where H2 is identified 
as a subspace of L2 via nontangential limit boundary value functions. In 
abstract form, Rosenblum showed that Toeplitz operators T are characterized 
by the identity (*) T = S*TS. If T = Tw and W is a positive semidefinite 
function, one easily sees that T is positive semidefinite as an operator on H2. 
Then H2 (or an appropriate completion if T does not have closed range) 
becomes a new Hilbert space HT in the inner product (x,y)T= (Tx,y). 
Moreover, equation (*) exactly says that S is an isometry ST as an operator on 
HT. One can then apply the abstract Beurling theorem to the pair {ST, HT) to 
get a more conventional model for the shift ST. From the map which 
transforms HT to the model space, one gets the outer factor A for W. The only 
delicate point is: when is the isometry ST actually a shift, i.e., when do we have 
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f\ > o $T HT = (0)? This is the criterion in the abstract setting corresponding to 
the classical log-integrability condition. While this abstract criterion is not 
computable in general, one can derive from it useful sufficient conditions (such 
as the Lowdenslager criterion and various comparison tests). While other 
authors (such as B. Sz.-Nagy and C. Foia§ [12]) have taken a similar approach 
to factorization, I think the results on factorization of this type reached their 
most refined form in the work of Rosenblum and Rovnyak from the early 
1970s (an account of which is given in the book). I mention in particular the 
general classes of matrix or operator trigonometric polynomials, rational 
functions with prescribed poles, entire functions of some particular exponential 
type, and various classes of pseudomeromorphic functions. As corollaries of a 
general factorization theorem for a class Af(w, v\ the authors get factorization 
theorems (many of them new at the time for the general operator-valued case) 
for each of these special classes in a unified way. In work of J. W. Helton and 
the reviewer, it is shown how other types of factorization (Wiener-Hopf and 
signed spectral factorization) can also be handled by the same abstract shift 
analysis approach; these are only mentioned together with references in the 
book. 

While the results here are quite general, they are not as explicit in special 
cases. For example, one does not get the detailed multiplicative structure of 
matrix inner functions due to Potapov in the middle 1950s unless one intro­
duces some ideas from operator model theory (see [4]). Also I. Gohberg and his 
collaborators [2, 7] have obtained more explicit factorization theorems for 
matrix polynomials and rational matrix functions by using a more detailed 
linear algebraic spectral approach. 

The second area of application discussed in the book is interpolation. The 
Nevanlinna-Pick interpolation problem is to find a function analytic on the 
unit disk and bounded by 1 that takes on prescribed values at prescribed 
points in the disk. In the early part of this century, Pick obtained a matrix 
positive-definiteness test for solutions to exist and Nevanlinna obtained an 
iterative scheme for obtaining all solutions. Nevanlinna's approach essentially 
used the classical Schwarz lemma at each step. The connection with Hardy 
spaces and abstract shift analysis begins with a 1967 paper of D. Sarason; he 
obtained the solution as an application of what later would be known as the 
Sarason-Sz.-Nagy-Foia§ lifting theorem. This theorem connects the commutant 
of a Hilbert space contraction operator with the commutant of its isometric 
dilation. The contraction operator one takes to be P^M^S? where S? is the 
orthogonal complement of an appropriate invariant subspace for Mz in H2; 
the isometric dilation then is simply Mz on H1. Again by thinking of functions 
in terms of the multiplication operators they induce, one can use operator 
theory to do function theory. Rosenblum and Rovnyak take a more abstract 
approach and derive an operator interpolation result of Nudelman using the 
lifting theorem. From this general result they then derive classical results (e.g. 
Carathéodory-Fejer as well as Nevanlinna-Pick and both together) as special 
cases. Also included are their results on boundary interpolation of Loewner 
type from the late 1970s. Many of these results are nontrivial refinements of 
the classical versions and are easier and better than those obtained recently by 
others using purely classical methods. 
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The book includes two background chapters on Hardy classes of operator 
and vector functions. A somewhat novel approach is the use of Hardy-Orlicz 
spaces and harmonic majorants to define functions of bounded type and the 
Nevanlinna class for operator-valued functions. This is a quick way to do it 
and enables the authors to handle factorization of unbounded functions with 
their abstract bounded operator theory. 

Interest in vectorial Hardy space theory as a tool for understanding opera­
tors was high in the 1960s and early 1970s. One highlight was the treatise of 
Sz.-Nagy and Foia§ [12] on the functional model for a completely nonunitary 
contraction; related model theories were being developed by de Branges and 
Rovnyak [3] and by Livsic and his school [4] in the Soviet Union. Since then, 
function-theoretic operator theory has evolved in other directions; now there is 
more emphasis on Bergman and other exotic function spaces rather than 
Hardy spaces, where the function theory is completely different. However, in 
the early 1970s, connections of the old operator model theory with systems 
theory were pointed out by such people as J. W. Helton, P. Dewilde, J. Baras 
and P. Fuhrmann [1, 5, 9, 10]. This has now evolved to the point that 
"if00-control" is an identifiable branch of control theory. An older area of 
apphcation, originating in classical work of Wiener and Kolmogoroff, is the 
theory of stationary stochastic processes where the spectral factorization prob­
lem comes up in prediction theory [8]. The book under review should be a 
valuable reference for workers and students in all these areas, as well as to 
classical complex analysts who are open to studying what operator theory and 
functional analysis can do for their subject. Other recent books on Hardy 
spaces [6, 11] have focused exclusively on the scalar theory. 
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