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The analysis of linear partial differential operators. Ill, by Lars Hörmander, 
Grundlehren der mathematischen Wissenschaften, Vol. 274, Springer-Verlag, 
Berlin, Heidelberg, New York, Tokyo, 1985, viii + 522 pp., $48.50. ISBN 
3-540-13828-5 

The analysis of linear partial differential operators. IV, by Lars Hörmander, 
Grundlehren der mathematischen Wissenschaften, Vol. 275, Springer-Verlag, 
Berlin, Heidelberg, New York, Tokyo, 1985, vii + 351 pp., $45.00. ISBN 
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These two volumes complete L. Hörmander's treatise on linear partial 
differential equations. They constitute the most complete and up-to-date 
account of this subject, by the author who has dominated it and made the most 
significant contributions in the last decades. 
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The subject of the book is the study, in general, of linear partial differential 
equations (the book does not deal with nonlinear problems, except some which 
are used as tools, in particular in symplectic geometry, e.g., for the construction 
of normal forms). 

The first two volumes of the treatise mainly dealt with L. Schwartz's 
distribution theory, Fourier transformation, and differential operators with 
constant coefficients or perturbations of these. The author himself describes 
them as a—rather thorough and far-reaching—updating of his book of 1963. 
Let us note, among the many new topics described in these books, the 
Malgrange preparation theorem, the method of the stationary phase and 
oscillatory integrals, and the definition of the wavefront set, which are im
portant tools for the last two volumes. 

The two last volumes are more specifically a treatise on microlocal analysis 
and its applications. They arrive at a time when microlocal analysis, after 
twenty years, can be considered as mature and has given many fruits, and yet 
is still perfectly alive and promising. 

It is hardly possible in a review that must remain of reasonable length to 
give a complete description of the contents of these two volumes. Their 
fourteen chapters occupy over 870 pages; each of these could well be a book by 
itself and deserves a review in its own right. So I will just try to explain what 
the book is about, and list the questions dealt with. 

On Rw, or in a set of local coordinates, a linear partial differential equation 
can be written 

(i) *(*.£)«-£ a«W0 = "' 
v ' \a\<m 

where the aa are smooth functions, e.g., constants when P has constant 
coefficients. Let us recall the effect on an exponential, with linear exponent 
x-t. 

(2) p(x,£}e'-*-P(x,i)e'-t. 

The importance of the Fourier transformation has been known for a long 
time, particularly for equations with constant coefficients such as the linearized 
heat equation; also the importance of some remarkable integral formulas 
yielding solutions of (1). The point of the Fourier transformation is that it 
diagonalizes differential operators with constant coefficients: if u is written as 
a superposition of exponentials 

(3) u - (2*)""ƒ «"•*{>(«)«« 

and P has constant coefficients, v - Pu, then 0(£) = P(£)w(£). 
For equations with constant coefficients one also gets integral solution 

formulas of the convolution type 

(4) u(x) = f a(x-y)v(y)dy, 
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where in good cases the function a is explicitly known (e.g., for the Laplace or 
wave or heat equation). 

Of course, there are difficulties in the methods suggested above. For in
stance, when solving (1) by Fourier transformation, the first obstacle is that 
P(£)-10 is usually not integrable. Also, in many formulas such as (4) the 
function a(x — y) is not locally integrable (e.g., for the wave equation in high 
dimension). It is therefore necessary to modify the definition of the integral so 
that it will include integrals such as (3) or (4) in less obvious cases. This is one 
of the main purposes of distribution theory as initiated by J. Hadamard and 
founded by L. Schwartz. Distribution theory is described in the first volume of 
L. Hörmander's treatise, 

Starting from explicit formulas, perturbation methods, e.g., energy or poten
tial inequalities, may often still give a good description of the solution of (1), 
for equations which do not differ too much from equations with constant 
coefficients (e.g., fortunately, many of the linear equations which are used in 
physics). However a second difficulty in P.D.E. theory is that the methods 
suggested above, which are adequate for equations with constant coefficients, 
sometimes fail completely for other equations. In fact equations with genuinely 
nonconstant coefficients can behave in a quite different manner. For instance 
the H. Lewy equation 

(~ tangential Cauchy-Riemann equation on the sphere of C2) does not have 
local solutions if the right side D G C 0 0 is not well chosen. This phenomenon 
never happens for equations with constant coefficients. 

Microlocal analysis, and the related use of symplectic geometry in P.D.E. 
theory, has permitted great progress in the understanding of operators with 
nonconstant coefficients. It is the description of this method and of its most 
spectacular applications which is the object of Volumes III and IV. Here is a 
naive description of what it is about. 

The first observation, which leads to the construction of pseudodifferential 
operators and of the wave-front set, is that although the Fourier transforma
tion no longer diagonalizes differential operators with nonconstant coeffi
cients, it still diagonalizes them approximately in a suitable sense. This can be 
seen when one looks at the effect of a differential operator P = Laa(x)(d/dx)a 

on the singularity of a distribution, or on an asymptotic expansion of the form 

(5) eitq>a ~ e"* £ ak{x)tk (t -> oo). 
k<k0 

In fact 

is a polynomial in t (and the derivatives of <p), whose coefficients are 
differential operators. The leading term of Pv is a scalar operator 

(6) P9 - tmoP(d<p) + Oit»-1), 
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where aP(dq>) is by definition the symbol of P evaluated at the cotangent 
vector dcp. One has 

(7) P(eit<f>a) = e"*P9(a) = e"*(tmoP + 0(tm~1)) • a; 

hence the effect of P on such an asymptotic expansion is approximately scalar, 
governed by the leading term. For instance the action of P is invertible if the 
leading term op(d<p) is not zero. The inverse is then given by a formula which 
belongs typically to pseudodifferential calculus. Let us further note that the 
effect of Py on asymptotic expansions is described by local formulas: in fact P^ 
only depends on the Taylor expansion at the point dcp of the total symbol 
p(x, I;) = Y,aa(x)(il;)a (and on the Taylor expansion of <p). The same is true 
for the inverse of P^ when oP(d(p) # 0: this is an asymptotic differential 
operator of the form Y,t~m~kQk(x,d/dx\ where Qkis a differential operator 
of order < k whose coefficients are polynomials of the Taylor coefficients of 
the total symbol of P (and of <p) at the point dtp. 

The action of P on singularities of distributions can be localized in a similar 
manner. For this purpose one defines the wave-front set: if ƒ is a distribution, 
one says that a covector (x0, £0) does not belong to the wave-front set of ƒ (or 
that ƒ is smooth at (x09 £0)) if ƒ can be represented near x0 by a Fourier 
integral 

ƒ = ƒ eix *tf (£) d£ (for x close to JC0), 

where a vanishes in some conical neighborhood of the half-line R+£0- Thus 
defined, the wave-front set does not depend on a choice of local coordinates. It 
decreases if one applies a differential operator, or more generally a pseudodif
ferential operator, so that again the effect of P on singularities, i.e. distribu
tions mod those which are C°° at (x0, £0) depends only on the restriction of 
the total symbol of P in small conical neighborhoods of (x0, £0). 

Microlocal analysis is an intelligent and organized exploitation of such 
remarks. The first step is the construction of pseudodifferential operators. 
These are operators of the form 

(8) u -> Au(x) = (2v)'Hf ei<x-y^a{x^)u(y)dyd^ 

where (x — y, £) is the scalar product, and a (the total symbol) is a function 
on R2n whose derivatives of high order decay suitably when £ -> oo. Differen
tial operators correspond to the case where a(x, £) is a polynomial in £. The 
next simplest case is the case where a has an asymptotic expansion (similar to 
(5)) in homogeneous functions with respect to £. 

(9) * ( * , 0 ~ E *«-*(*,€), ™&am_k(xM) = \m-kam-k(x,S). 

In fact the class of functions (total symbols) a(x, £) for which the operator 
a(x, D) defined as in (8) deserves the name "pseudodifferential operator" is 
wide. It is important in limit cases to prove positivity or L2 continuity results. 
In limit cases it is sometimes technically more convenient to replace the 
function a(x9 £) in formula (8) by the more symmetric a((x + y)/2, £) (" Weyl 
calculus"). The study of pseudodifferential operators, including the refined 
study of positivity, is done in Chapter 18. 
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The other essential tools of microlocal analysis are the Lagrangian distribu
tions and Fourier integral operators (Chapter 25), and some symplectic geome
try, e.g., normal forms for functions, quadratic forms, real or complex hyper-
surfaces or pairs of hypersurfaces (Chapter 21). The role of symplectic geome
try appears immediately in the symbolic calculus of pseudodifferential opera
tors; the symbol of a product P o g i s the product o(PQ) = a(P)a(Q). Thus 
if P, Q are respectively of order m, m', the bracket [P, Q] = PQ - QP is of 
order m + m' - 1 at most. Its symbol is 

(10) a([P,Q]) = -i{a(P),o(Q)}, 

where {ƒ, g] is the Poisson bracket associated with the canonical symplectic 
form Hldl~j dXj on the cotangent bundle (in local coordinates 

A Lagrangian distribution is a distribution u that can be expressed locally as 

a "Fourier integral" 

(11) w = ƒ ei^x^a(xi0)d6 

where the phase function <p is real (or with positive imaginary part), homoge
neous of degree 1 in 0, and the amplitude (symbol) a is of the same type as 
those which enter in the definition of pseudodifferential operators. Such a 
distribution is associated with a Lagrangian submanifold A of the cotangent 
bundle: the image of the critical locus of <p(9(p/80 = 0) by the differential 
map (x, 0) »-> (x, dxq>) (this is assumed to be an immersion). The leading term 
of a may be reinterpreted intrinsically as a section of the Maslov Une bundle 
of A, which has a geometrical definition. 

A generic example of a Lagrangian submanifold of T*K is the conormal 
bundle of a hypersurface ƒ = 0 of a manifold X, i.e., the set of covectors 
(x, £) e T*X with f(x) = 0, £ parallel to df. The associated Lagrangian 
distributions have the characteristic form 

(12) w = af~N + b Log ƒ (N an integer), or afs (s <£ Z) , 

where a and b are smooth functions on X. 
Many distributions which appear in integral solution formulas for partial 

differential equations are Lagrangian. 
Fourier integral operators are operators defined by a formula 

(13) Au(x)=j T(x,y)u(y)dy, 

where T is a Lagrangian distribution. Many interesting operators are of this 
type, e.g., exp ityf^K, where A is the Laplace operator on a Riemannian 
manifold. These operators also enable us to make arbitrary homogeneous 
canonical changes of coordinates in the cotangent bundle, thus reducing the 
local study of differential operators to much simpler forms than permitted by 
using just changes of coordinates. 
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We end with a short description of the contents of the two books. Volume 
III begins with a chapter on second-order differential equations (regularity of 
the solutions, existence of local solutions, unique continuation of solutions,... ) 
which does not use microlocal techniques at all, and serves as a reminder that 
older techniques are also quite efficient. 

As was mentioned above, the books contain three chapters on the founda
tions: pseudodifferential operators (Chapter 17) and sharp L1 inequalities for 
these: symplectic geometry (Chapter 21), Lagrangian distributions and Fourier 
integral operators (Chapter 25). 

The rest of the book is devoted to applications, mostly those which are 
important or striking, use microlocal analysis in a convincing manner, and 
have now reached a reasonably mature form. 

Some topics are now older, such as Calderón's theorem on the uniqueness of 
the solution of the Cauchy problem, which is described and generalized in 
Chapter 28. This theorem was proved in 1958 and uses in an essential manner 
singular integral operators (the earlier name of pseudodifferential operators), 
which appear as first-order factors of the top-order part of the given operator. 

On a closely related subject, Chapter 23 also contains old results: Hada-
mard's theory of the hyperbolic Cauchy problem was published in 1932. Here 
it is generalized and improved. New phenomena linked with nonconstant 
coefficients are analyzed. For these the use of symplectic geometry and 
pseudodifferential operators is essential and makes it possible to exhibit 
well-posed Cauchy problems for operators which have multiple characteristic 
roots on the initial hypersurface, such as the Tricomi operator 

il _ x
 ny i l 

dxl n x dxf' 
in the half-space xn > 0. 

Two chapters (19, 20) are devoted to the theory of elliptic operators and the 
index formula for these. So far as analysis is concerned this is the simplest 
application of the theory of pseudodifferential operators. The index formula 
was described and proved for general elliptic pseudodifferential operators by 
Atiyah and Singer in 1963. Although pseudodifferential operators are not 
really indispensable in the proof, they are very practical, e.g., in making 
continuous deformations. 

The other applications are more recent. The first occurrences of authentic 
Fourier integral operators took place in a work of L. Hörmander on the 
asymptotics of the spectral function of an elliptic operator and in a work of L. 
Nirenberg and F. Treves on the existence of local solutions of equations of 
principal type. These theories are described in the book, updated and com
pleted (Chapters 29 and 26). 

The theory of subelliptic estimates is closely related to the local existence 
theory for equations of principal type. Egorov's results, announced in 1975, 
were proved later by L. Hörmander (in 1979). They take their definitive form 
in Chapter 27. 

Chapter 22 analyzes some cases of microhypoellipticity. A pseudodifferential 
operator P is microhypoelliptic if for any covector £ and any distribution ƒ, ƒ 
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is C00 near £ whenever P( ƒ ) is so. In some cases this can be seen because one 
can construct directly a pseudodifferential inverse; for this the large classes of 
pseudodifferential operators described in Chapter 19 are a very sharp tool. In 
other cases one cannot construct directly a pseudodifferential inverse, but one 
can prove microhypoellipticity by arguments using both microlocal geometry 
and a priori estimates. Such is the case for operators "of Kolmogorov type": 
X0 4- L X}, where the Xj are vector fields whose Lie algebra spans the whole 
space at every point. 

Chapter 24 contains the theory of the mixed Cauchy-Dirichlet problem for 
second-order differential operators (i.e., the study of the evolution in time of 
the solution of the wave equation in a bounded domain, with some reflection 
condition on the boundary). The existence of solutions has been proved by 
techniques using energy inequalities. The precise study of the singularities of 
the solutions and of their propagation requires the full arsenal of microlocal 
analysis. 

The last chapter (30) is on scattering theory for long-range potentials 
(short-range scattering is dealt with in Volume II). The typical example is the 
theory of H = Y,d2/dxj + V(x\ where the potential V does not decay fast 
enough at infinity (e.g. V = 0(1/\x\)). The aim is to intertwine the part of H 
with continuous spectrum with the Laplace operator Y,d2/dxj (i.e., prove that 
nonbounded particles behave at infinity as free particles). One of the key 
ingredients of the theory is the construction of a distorted Fourier transforma
tion adapted to H, i.e., of a family of approximate solutions of H(f^) = -\è\2fç 
which behave at infinity asymptotically as exp(-/x • £). The same ideas of 
microlocal analysis are used, now applied to asymptotic expansions when 
x -* oo. 

The Unes above only give a very short idea of the contents of the book. I at 
least hope they will be motivation to read it. Each chapter of the book also 
contains an introduction, which describes with more details the contents and 
methods of the chapter, and a bibliographical and historical notice. The book 
also contains a very complete bibliography. It is a superb book, which must be 
present in every mathematical library, and an indispensable tool for all—young 
and old—interested in the theory of partial differential operators. 
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Minimal surfaces and functions of bounded variation, by Enrico Giusti, Mono
graphs in Mathematics, Vol. 80, Birkhâuser, Boston-Basel-Stuttgart, 1984, 
xii + 240 pp., $39.95. ISBN 0-8176-3153-4 

Among all surfaces spanning a given boundary is there one of least area? 
Such problems have sometimes been called collectively the problem of Plateau 
in honor of a nineteenth-century physicist who wrote a treatise on equilibrium 


