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essential, therefore, to the understanding of nonlinear phenomena as well as 
the operator to study in the first model problems. 

The early results were summarized fifteen years ago by Berger, Gauduchon, 
and Mazets in Le spectre d'une variété riemannienne,1 which at that time well 
represented the literature on the "geometry of the Laplace operator." Growing 
out of a set of lectures from the late sixties, the purpose of these notes was to 
acquaint graduate students or newcomers to the field of eigenvalues on 
manifolds with the basic background and results. One of the high points was 
the asymptotic expansion for the heat kernel which enabled one to read off 
geometric invariants of the manifold such as the volume and integral of scalar 
curvature from the " high-end" behavior of the spectrum. There were also a few 
scattered results on the first nonzero eigenvalue estimates. However, with the 
currently vigorous activity, it is high time for another overview of newer results 
and, perhaps more importantly, of the techniques from the field. To this end, 
Isaac Chavel offers his Eigenvalues in Riemannian geometry. 

From his very particular vantage point, Chavel gives his summation of what 
is known about the interplay of the spectrum of the Laplacian and geometry in 
the book Eigenvalues in Riemannian geometry. The principal focus of this book 
is on the relationship between the lower spectrum (as opposed to asymptotics 
of the spectrum) and the geometry of the manifold. A substantial portion of 
this theory was developed in the last two decades and hence Chavel's book can 
be viewed as an organized (and desperately needed) update on the field. As 
well as being a modern and extensive hst of theorems about eigenvalues, the 
book also covers sufficient (yet minimal) background material in geometry and 
elliptic PDEs so that it can be used as a graduate text. 

The book serves as an excellent reference for areas and techniques which the 
author favors. However, beginners may find the presentation directionless and 
consisting of an assembly of isolated theorems. It would have been beneficial 
to the readers if more geometric results via eigenvalues were discussed. 
Undoubtedly, efforts to present another viewpoint on the subject will be made. 

PETER LI 

1 An updated bibliography has been compiled by P. Bérard and M. Berger, and published as an 
appendix in Spectral geometry: Direct and inverse problems by P. Bérard. 
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Robert Finn in the preface to his book writes: 
"Capillarity phenomena are all about us; anyone who has seen a drop of 

dew on a plant leaf or the spray from a waterfall has observed them. Apart 
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from their frequently remarked poetic qualities, phenomena of this sort are so 
familiar as to escape special notice. In this sense the rise of liquid in a narrow 
tube is a more dramatic event that demands and at first defied explanation; 
recorded observations of this and similar occurrences can be traced back to 
times of antiquity, and for lack of explanation came to be described by words 
deriving from the Latin word 'capillus', meaning hair." 

In fact the first written description of the observation of the capillarity 
phenomena in narrow tubes was made by the Italian scientist Nicoló Aggiunti 
(1600-1635) in a booklet, never published, by the title "Un libro di problemi 
vari geometrici e di speculazioni, ed esperienze fisiche" [1]. 

Aggiunti wrote in his little book that "lo scoprimento del moto occulto 
delFacqua risolverà moltissimi problemi" [the discovery of the hidden motion 
of water will solve many problems]. Among them "Perché Facqua non si livelli 
in un vaso cosi fatto [Figure 1], ma sia più alta nella cannella angusta" [why 
the water is not at the same level in a vase like this, but is higher in the narrow 
tube]. 

FIGURE 1 

It is a commonplace that the first attempts to explain observed phenomena 
connected with capillarity go back to Leonardo da Vinci. "Enfin, deux 
observations capitales, celle de Faction capillaire et celle de la diffraction, dont 
jusqu'à présent on avait méconnu le véritable auteur, sont dues également à ce 
brillant génie" [2]. 

Some effects of capillary action were also known to the Muslim natural 
philosophers of the 12th century, such as Al-Khazini [3, 4, 5]. 

The modern history of capillarity attraction starts with Young [6] and 
Laplace [7] at the beginning of the 19th century. Laplace was able to show that 
the mean curvature H of the free surface of a liquid inside a narrow tube is 
proportional to the pressure change across the surface; this capillary pressure is 
due to the presence of molecular forces that have an extremely short range of 
action. This was Segner's ' tenacitas' [8], a first vague idea of what we today call 
surface tension; the idea of Segner was not completely correct, as was pointed 
out by Bikerman [9]. 
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The notion of mean curvature of a surface was introduced by T. Young 
(1805) and P. S. Laplace (1806) just for characterizing quantitatively the rise of 
liquid in a narrow tube. The Laplace or Young-Laplace equation can be 
written as 

P - oil/R, + 1/R2) 

where P is the pressure, a is the surface tension, Rx and R2 are the two 
principal radii of curvature; so for the height u of the surface above the level 
corresponding to atmospheric pressure we have 

\ku - Hil/R, + 1/R2) 

where A: is a physical constant. 
All these go back to the beginning of the 19th century. Why then still work 

on the problem? A first observation is that if we assume that the surface can be 
described as a graph of a function 

z = u(x,y) 

then we have for the mean curvature H 

where 

a = 
1 + ui 

( l + | D W | 2 ) 3 / 2 : 

and so we obtain 

a) 

2 H = auxx + 2buxy + cu 

b = 
1 + ui 

(l + |i>«|2)3/2 : (1 + \Du\2) 2 \ 3 / 2 ' 

auv 
+ 2bUxy + CUyy ku 

for the height u of the surface. 
The P.D.E. (1) is nonlinear, elliptic but not uniformly elliptic. Thomas 

Young in his "Essay" introduced also the idea that in equilibrium configura­
tion the fluid meets the bounding walls in a constant angle y depending only 
on the materials (Figure 2). 

FIGURE 2 



328 BOOK REVIEW 

In 1830 Gauss proposed a new method to treat the problem. Gauss based his 
reasoning on the principle of virtual work, according to which the energy of a 
mechanical system in equilibrium is unvaried under arbitrary virtual displace­
ments consistent with the constraints [10]. 

For a system of fluid and gas and rigid bounding walls the energy in 
question can be divided into four terms: 

(1) Free surface energy: this energy must be proportional to the surface area 
A and so 

Es = oA, 

where a is the surface tension. 
(2) Wetting energy: this is the adhesion energy between fluid and the walls, 

Ew=-oPA*> 

where /? > 0 in a 'wetting' configuration (Figure 2) and is called the relative 
adhesion coefficient between the fluid and the walls; A* is the area wetted by 
the fluid. 

(3) Gravitational energy: 

E, 
g 

j Apdx 

where p is the local density and A a potential energy for unit mass, depending 
on the position within the media. 

(4) Volume constraint: in many problems the constancy of volume of fluid is 
a constraint that must be respected. We can write 

Ev = aXV 

where V is the volume and X a Lagrange multiplier to be determined. 
So the total energy is given by 

E = ai A - 0A* + i ƒ Apdx + \v\. 

In order to apply the principle of virtual work we introduce a virtual 
displacement. If we consider a capillary surface sufficiently small that it can be 
represented as a graph z = W(JC, y) over a domain fl, we then consider any 
variations with their support in £2. Consider also the case of constant p and 
A = gw, the gravitational potential. Then we can write for the total energy, 
restricting only to terms that will be varied, 

E = oljjl + u2
x + u2

ydw + ^ ƒ udw + \j udw\. 

Using 

u(x, y\ e) = u(x, y) + er)(x, y), 

as a virtual displacement for a candidate w(x, y) for an equilibrium surface, 
with a smooth TJ and supp r) c Î2, we obtain 

divTw = KU + X; Tw = - y « . 
VI + |Vw|2 



BOOK REVIEW 329 

We can also put X =* 0 in the case of the configuration of Figure 2, in which 
the tube has infinite length in a large container. We then obtain 

divTw = KU 

with 

K = pg/o 

called the capillary constant. Moreover if 2 = 9S2 and v is the exterior normal 
to 2 , and y the angle between the surface S and the cylinder wall we have 

y - Tu = /? = cosy, 

thus determining the constant angle y. 
We can now make the fundamental observation that explains one of the 

reasons for studying capillary problems: the problem of finding a capillary 
surface is a purely geometric one, that is, to find a surface whose mean curvature 
is a prescribed function of position and which meets prescribed rigid boundary 
walls in a prescribed angle. 

(2) |divTw = /cw in £2, 
(3) \ y • Tw = cosy in S. 

Now a large number of the modern results on capillary surfaces are devoted 
to establishing the existence of solutions for the problem (2), (3). The first 
general result was obtained only in 1973 using the variational approach [11]. 
As we have seen, the energy functional consists of a 'surface integral' plus a 
'volume integral'. Now the problem is that the classical definition of surface 
area is rather inadequate for treating this type of problem. A satisfactory 
theory of surface area for a general class of surfaces of codimension one in R", 
n > 2, has been developed by E. De Giorgi in the fifties, and then by 
M. Miranda, M. Giaquinta, E. Giusti, and others [12-15]. Independently the 
ideas of geometric measure theory were developed by H. Fédérer, W. H. 
Fleming, F. J. Almgren, W. K. Allard, and others, and have been used 
effectively by Jean Taylor to consider boundary regularity for capillarity 
problems [16-20]. 

The idea is to look for the solution in a class of competing functions 
sufficiently large that compactness of a minimizing sequence can be guaran­
teed; the variational condition then leads to the uniqueness and regularity of 
the limit function. The class of functions considered by De Giorgi's method is 
the class of BV-functions, functions of bounded variation on fi. As Finn 
pointed out, in his chapter devoted to existence theorems, 

Such an approach might seem at first glance to be hazardous for 
the present problems, since the boundary condition (3) involves 
derivatives on the boundary, where differentiability of weak solu­
tions is usually difficult to prove. In fact, the minimizing function 
produced by the variational procedure is known initially only to 
have a generalized Ü trace on the boundary, so that (3) can be 
defined only in a very weak sense. Nevertheless, the minimizing 
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property suffices for showing the uniqueness of the limit function, 
and for identifying it with the smooth solution whenever a smooth 
solution exists. 

So the energy functional for the capillary surfaces in cylindrical vertical 
tubes can be expressed as 

f ]/l + \Du\2 - p[ udHn_l + ~f u2dw 

where £2, open and bounded in Rw, has Lipschitz boundary, and u e BV(Î2). 
An important step for the existence result is to obtain a general result 

regarding the trace of BV-functions, 

( udHn_l<ia(' \Du\ + S f udw; S > 0, a > 1. 

It implies that capillary surfaces always exist for ft in the range 

0 < p < 1/Vl + L2 (wettingcase), 

where L is the Lipschitz constant of 3S2. In fact no solutions with bounded 
energy can exist, for example, for a domain in the form of a circular sector 
where 0 is the angle of the sector when /? > 1 / v i + L2, that is, when 
0 + 2y < 77. The discontinuity at 0 + 2y =* m is also confirmed by physical 
experiments [21]. 

I have only considered the case of the graph of a function u = u(x, y) in £2 
to give an idea of what type of problems occur. But many other questions can 
be considered: the case of drops, pendent and sessile, the parametric capillarity 
problems, boundary regularity, the symmetric case for vertical tubes, estimates 
for solutions, uniqueness. Many of these problems have been considered in the 
last years using either variational techniques or other methods. More recently 
the case of rotating drops has also been treated using a variational approach 
[22, 23]. 

Finn's book is an exhaustive and clear description of all the more recent 
results, excluding rotating drops. It is not a simple collection of the latest 
works in this area but a successful attempt to give a unified and comprehensi­
ble treatment of all the problems connected with capillary phenomena. 
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