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Nonstandard or infinitesimal analysis was invented by the late Abraham 
Robinson in 1960. Since that time there has been continued interest in the 
subject and a number of impressive results have been established using 
nonstandard methods. These results testify to the vision of the man of whom 
Gödel wrote, "(He was) the one mathematical logician who accomplished 
incomparably more than anybody else in making this science fruitful for 
mathematics. I am sure his name will be remembered by mathematicians for 
centuries." The book under review is a welcome addition to a growing Hst 
devoted to the subject. 

Nonstandard analysis has had a controversial history. It had its roots in the 
use of infinitesimals by Leibniz and Newton in the development of calculus. 
Infinitesimals are "numbers" which are smaller in absolute value than any real 
number. Leibniz regarded them as entities in some "ideal" structure which also 
contained the infinitely large numbers and the reals. He also implicitly made 
the important but somewhat vague hypothesis that this structure satisfied the 
same rules as the ordinary real number system. The challenge facing Robinson 
was thus to 

(a) demonstrate the existence of a set *R, now called the 
hyperreal numbers, which carried analogues of all the struc­
tures on the reals R (for example, the ring and the set 
theoretic structures); 

(b) ensure that statements true in the real number system are 
mirrored in a natural way by statements true in the structures 
on *R. 
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The statement (b) is a special case of what is now known as the transfer 
principle. This principle has turned out to be the central tool in nonstandard 
analysis. To deal with it, a little mathematical logic is necessary in order to 
make precise what is meant by the words "statement" and "true". But it is 
important to know that in practice nonstandard analysis involves only a 
minimal amount of mathematical logic. Indeed, it entails essentially none once 
the foundations have been established. Robinson himself used mathematical 
logic (in particular, the compactness theorem of mathematical logic) to estab­
lish his results. He then went on to show how these ideas could be used to 
make infinitesimal methods in calculus rigorous, and observed that many 
standard results involving various types of limits often had easier nonstandard 
proofs. If Robinson had achieved only this vindication of Leibniz, nonstan­
dard analysis would be just a footnote to history. But he realized that every 
mathematical structure has a nonstandard model which can be used to gain 
knowledge of the original structure by application of the appropriate transfer 
principle. This led to the great variety of applications that we see today. 

Robinson's book Nonstandard analysis [15] appeared in 1966 and set the 
stage for a much more intensive development of the subject. However, his 
proof of the basic theorems on nonstandard models involved a difficult 
excursion into mathematical logic and perhaps persuaded many nonlogicians 
that they could never master the subject. Fortunately it turns out that non­
standard models can be constructed as ultrapowers, and the transfer principle 
follows from Los' theorem. This method, which is used in the book under 
review, is much more accessible to nonlogicians. Thus nonstandard analysis 
can be regarded as ultrapower methods made easy by systematic use of the 
transfer principle. Many nonstandard arguments derive additional strength by 
using /c-saturated models, a notion which was extensively investigated in 
Luxemburg's paper A general theory of monads, which appeared in [10]. 
(Saturation is available in the ultrapower setting if the ultrapowers are con­
structed from K-good ultrafilters.) 

The first part of the book under review, called the Basic Course, develops all 
of the material needed later. After presenting the foundations, the first chapter 
continues with a nonstandard development of the calculus, including Robin­
son's [14] simple proof of the Peano existence theorem for ordinary differential 
equations, which avoids the Arzela-Ascoli theorem, along with elaborations 
due to Birkeland and Normann. The chapter also contains an introduction to 
some interesting work on singular perturbation theory for ordinary differential 
equations due to Callot and F. and M. Diener. 

After discussing saturation, the second chapter presents some applications to 
topology and functional analysis, including a brief discussion of applications 
to Banach space theory by Henson and Moore (see the survey in [5]). Related 
work using ultrapower techniques (without nonstandard analysis) was initiated 
by Dacunha-Castelle and Krivine and is now extensively employed. But the 
nonstandard theory has conceptual advantages over the corresponding ultra-
filter approach, since it uses natural tools and concepts which have no simple 
counterpart in the ultrapower setting. 
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A large part of the book under review is devoted to applications of 
nonstandard analysis to various aspects of probability theory, and the founda­
tions are presented in Chapter three. This work began with Peter Loeb's 
important paper [8] on nonstandard measure theory. Until that time, measure 
theory had posed problems to nonstandard analysts because there was no way 
of dealing with countable additivity in the internal structure of the nonstan­
dard model. Loeb's idea was to make nonstandard finitely additive pre-
measure spaces into standard measure spaces (known now as Loeb spaces). He 
used this idea to give nonstandard representations of several problems in 
continuous probability, in particular the Poisson process. This work paved the 
way for Robert Anderson [1] to represent Brownian motion as an infinitesimal 
random walk. The book under review briefly mentions the work of Edwin 
Perkins, who used the same ideas to settle an important conjecture in Brownian 
local time in his Ph.D. thesis [12]. A central theme in these applications is that 
problems in probability of a continuous nature can be represented by discrete 
problems in hyperfinite nonstandard models. These models are finite from the 
nonstandard, but infinite from the standard point of view. Their use makes for 
an intuitive clarity and ease of calculation which can simplify difficult prob­
lems. 

The second part of the book begins with a long chapter on applications 
of nonstandard analysis to stochastic processes which explores at length the 
ideas mentioned in the previous paragraph. In the last few years the number of 
applications has exploded, and any Hst is necessarily incomplete. The following 
should at least be mentioned, since they are covered in the book: Itô integra­
tion (Anderson), stochastic integration with respect to martingales (Lindstrom, 
Hoover, and Perkins), very general existence theorems for stochastic differen­
tial equations (mostly due to Keisler and his students), optimal control for 
stochastic differential equations (Nigel Cutland), stochastic integration in 
infinite-dimensional spaces (Lindstrom), and Levy Brownian motion (A. Stoll). 

One of the great merits of the book is that it presents many appucations of 
nonstandard analysis to mathematical physics. Two of the authors, Albeverio 
and Hoegh-Krohn, have done extensive research in quantum field theory and 
related areas, and some of their work appears here for the first time. There is a 
chapter on hyperfinite Dirichlet forms and Markov processes, in which hyper­
finite linear algebra and Markov chains replace the usual highly technical 
approach using functional analysis and continuous-time Markov processes. 
The authors expect that the easier nonstandard methods will lead to solutions 
of infinite-dimensional problems in quantum field theory and hydrodynamics. 

Next, there is a chapter devoted to various topics in differential operators. 
The first section deals with an eigenvalue problem for a Sturm-Liouville 
equation with a measurable coefficient by using a discrete approximation 
(Birkeland, Normann). In the second section, singular perturbations of non-
negative operators are investigated and applied to differential operators with 
potentials concentrated in points and along Brownian paths, with appucations 
to polymer models. The final section is an introduction to recent work on the 
Boltzmann equation by Leif Arkeryd, who has just obtained the most general 
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existence theorem so far known for initial conditions far from equilibrium. His 
strategy is to go to a nonstandard model and use transfer of known existence 
results for truncated problems when the truncation parameters are infinite. 

The last chapter deals with hyperfinite lattice models. First the authors 
discuss stochastic evolution and classical equilibrium theory for hyperfinite 
lattices with finite spacing, the nonstandard equivalent of the corresponding 
theories for infinite particle systems. Next comes a section on the global 
Markov property, which includes results due to Kessler, and which has 
applications to quantum field theory. In the last sections, the authors model 
Euclidean quantum field theory as a continuous spin system on a hyperfinite 
lattice with infinitesimal spacing, and discuss connections with polymer mea­
sures. 

This excellent book is an encyclopedic survey of the applications of non­
standard analysis to the areas we have discussed. But even so, it only scratches 
the surface of possible applications of nonstandard analysis. The technique has 
produced new results in areas as diverse as complex function theory (Robin­
son, Behrens), potential theory (Loeb), number theory (Robinson, Roquette), 
and mathematical economics (Robinson, Brown, Anderson, etc.), to mention a 
few not covered in the text. In fact, a number of important results, for example 
in probability theory and the theory of Banach spaces, have so far only been 
proved using ultrapower or nonstandard techniques (for a discussion of the 
strength of nonstandard methods, see [3]). As more people realize its latent 
power, nonstandard analysis will likely become an integral part of most 
mathematicians' working vocabulary. Anyone whose interest has been aroused 
can find more references in the books listed below. 
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Spectral theory has its origin in the theories of matrices and integral 
equations, and in the case of unbounded operators, in the theory of differential 
equations. David Hubert was the first mathematician to use the word "spec­
trum" in its present meaning: if T is a bounded operator acting in a (complex) 
Banach space X, its spectrum o(T) is the set of all complex numbers X, for 
which XI — T is singular (that is, not invertible in the Banach algebra B(X) 
of all bounded Hnear operators on X). A central role in the study of the 
spectrum is played by the resolvent operator R(X:T) = (XI — T)~l, defined 
and analytic in the resolvent set p(T)= C\o(T), and by the analytic 
operational calculus T: ƒ -> f(T), which is a continuous homomorphism of the 
topological algebra H(a(T)) of all functions analytic in a neighborhood of 
o(T) into B(X\ such that T ( / 0 ) = T for /0(X) = X. The theory of analytic 
functions became a powerful tool in spectral theory in the work of Laguerre 
(1867), Frobenius (1896), and Poincaré (1899), and later in the now classical 
work of F. Riesz, Hilbert, Wiener, Stone, Beurling, Gelfand, Dunford, and 
many others. The related spectral theory of Banach algebras, pioneered by 
Gelfand and Shilov, follows a similar path. For unbounded closed operators, 
Taylor extended the Riesz-Dunford integral formula for T( ƒ ) in the form 

<•(ƒ) = /(<*>) + 2^-jf/(X),R(X; T)d\ 

for ƒ analytic in a neighborhood of o(T) U {oo} (and T a suitable contour). 
The analytic operational calculus leads to the construction of projections 

E(o) associated with the spectral sets a of T (i.e., the open-closed subsets of 
o(T) in the relative topology), by means of the formula 

I"""1 JT(o) 


