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solutions for abstract parabolic equations by a different method. The author 
applies these results to semilinear parabolic equations and the Navier-Stokes 
equations. This provides another proof for regularity criteria in Chapter IV. 
The major part of Chapters IV and V is based on recent results of the author 
and Sohr. Each chapter has a section for comments on related results which 
is very helpful for the reader. Most of prerequisites are given in the book, 
with or without proof. Finally, the reviewer acknowledges that the book is 
well proofread, although there are a lot of complicated formulas with sub- and 
superscripts. 
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Most mathematicians soon acquire the habit of scribbling diagrams and 
drawing pictures when reading mathematics to help them follow the argu
ment. This book, however, contains so many useful and attractive diagrams 
(234 figures in 323 pages) that scribbling is much less necessary than usual. It 
is a book for readers who like thinking in pictures better than following a proof 
through line by line. Explanations are stressed more than formal proofs, the
orems which are not needed but are considered interesting are stated without 
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proofs, and useful methods are illustrated by the presentation of important 
special cases rather than by the development of the most general theory. This 
makes the book easier to read for nonspecialists who want to gain a good 
understanding of the material and the ability to apply differential geometry 
and topology to problems in pure and applied mathematics. However, having 
no index, it is less satisfactory as a work of reference. 

The heart of the book is the study of critical points and level sets of smooth 
functions on manifolds and their relation to the topology of manifolds. The 
author goes on to consider several rather different areas of differential geome
try: the topology of three-dimensional manifolds, the geometry of Lie groups, 
Lie algebras and symmetric spaces, and lastly symplectic geometry leading 
into mechanics through Hamiltonian systems. Although most of the book 
concerns pure mathematics the reader is reminded of its relevance to mechan
ics and theoretical physics, and the final chapter looks at applied problems 
such as the motion of a solid body in an ideal fluid. 

A smooth real-valued function with nondegenerate critical points (a "Morse 
function") on a compact manifold X can be used to give X the structure of 
a CW complex. A CW complex is a topological space with a decomposition 
as a disjoint union of subsets, called cells, each homeomorphic to an open 
unit ball in Euclidean space of some dimension. The topology of the CW 
complex is built up inductively: a cell is "glued" to the union of the cells of 
lower dimension by a continuous map from the boundary of the appropriate 
unit ball in Euclidean space. Any manifold can be made into a CW complex, 
but so can spaces which are not necessarily manifolds—for example level sets 
of smooth functions on manifolds. From the description of a space as a CW 
complex one can obtain information about topological invariants such as its 
homology groups. A simple example is the fact that the dimension of the 
kth real homology group is at most the number of fc-dimensional cells. Much 
more subtle information than this can also be obtained. 

Given a Morse function ƒ on a compact manifold X, one can make X into 
a CW complex whose cells correspond to critical points of ƒ by putting a 
Riemannian metric on X and considering the downward trajectories of the 
gradient flow of ƒ on X. The cell corresponding to a critical point p is the 
set of all points in X whose downward trajectories converge to p (and the 
codimension of this cell is called the index of p). It is an important fact that 
on any compact connected manifold there exist "admissible" Morse functions, 
i.e., Morse functions with exactly one minimum and one maximum and whose 
value at any critical point is the index of that point. This implies several topo
logical properties of compact manifolds not held by arbitrary compact CW 
complexes. For example if X is an oriented compact n-dimensional manifold 
there is a perfect pairing between its real homology groups of dimensions k 
and n — k for any k ("Poincaré duality"). This can be seen by comparing a 
suitable Morse function ƒ with the Morse function —ƒ. 

The existence of admissible Morse functions on a compact connected man
ifold X can also be used to show that if X is three-dimensional and ori
ented then X has a Heegaard splitting of some genus g. That is, X is the 
union of two compact submanifolds-with-boundaries X\ and X2 such that 
dX\ = 8X2 = Xi fi X2 is a two-dimensional submanifold of X diffeomorphic 
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to a sphere with g handles Mg, and X\ and X2 are both diffeomorphic to the 
corresponding "solid sphere with g handles" Hg (often called a handlebody). 
If ƒ is an admissible Morse function on X then its critical points all have 
indices 0,1,2, or 3 and if 1 < a < 2 then 

xy^r1 {%<*)), x2 = ri([«,3]) 
defines a Heegaard splitting of X. 

Using the Heegaard splitting one finds that any compact connected oriented 
three-manifold can be obtained from two copies of a handlebody Hg glued 
together by some diffeomorphism of its boundary Mg. When g < 1 the 
different three-manifolds obtained in this way are easy to describe. However in 
general the question of when two diffeomorphisms F: Mg -+ Mg and F: Mg —• 
Mg give rise to the same three-manifold is an extremely difficult one. It was 
proved in 1980 that when g = 2 there is an algorithm for deciding when a 
diffeomorphism F: Mg —• Mg gives rise to the standard three-sphere [1] but 
this no longer works when g > 3. 

A rather different area of differential geometry considered in some detail in 
this book is the theory of Hamiltonian systems, which arose from the study 
of systems of differential equations in classical mechanics. To say that a 
differential system is Hamiltonian means that on the "phase space" M of the 
system there is a smooth real-valued function H and a symplectic form w (i.e., 
a closed nondegenerate 2-form) such that if locally we choose coordinates 

(Pl».--jPn>9li-..»9n) 

on M such that 
w = ^T dpiA dqi 

l<i<n 

then the system is given locally by the equations 

dpi/dt = dH/dqi, dqi/dt = —dH/dpi. 

Then the Hamiltonian function H is an integral of the system, in the sense 
that it is constant along trajectories. The system is said to be completely 
integrable in the sense of Liouville [2] if there are smooth functions Hi = if, 
H2 > • • • ? Hn on M whose gradients are linearly independent almost every
where, and {Hj,Hk} = 0 where 

{JÏJ-,Jïfc}= Yl (dHj/dqMdHk/dpi) - (dHj/dpiWHk/dqi) 
l<i<n 

in local coordinates. This implies that Hi,..., Hn are integrals of the system, 
and that for generic a = ( 0 1 , . . . , an) the submanifold 

Ma = {xe M: Hi{x) = au l<i< n} 

is of the form R n /A where A is a lattice, with coordinates ^ i , . . . , ^ n on 
R n evolving linearly in time. Thus the set of integrals H±,..., Hn (called a 
"full commutative set of functions on M" ) together with the "angle variables" 
<Pi > • • • 5 <Pn lead to a complete solution of the system. 

Of course in general finding all the integrals of a Hamiltonian system is ex
tremely hard. However it is possible to solve several important Hamiltonian 
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systems by relating them to the theory of Lie groups, Lie algebras and sym
metric spaces. A Lie group G acts on the dual g* of its Lie algebra and every 
orbit in g* has a canonical symplectic structure. It is conjectured in general 
and proved in many special cases that there are smooth functions ƒi, — , ƒ A? 
on g* which restrict to a full commutative set of functions on generic orbits in 
g*. Thus the Hamiltonian systems on the orbits defined by any of the func
tions fi can be solved completely. In the last chapter of his book Fomenko 
shows how several differential systems arising from classical mechanics (such 
as the motion of a solid body in an ideal fluid) can be solved in this way by 
virtue of their equivalence to Hamiltonian systems on orbits in duals of Lie 
algebras. 

Unfortunately this book suffers from having been poorly translated from 
Russian. Indeed a basic knowledge of the Russian language makes reading 
easier. In most cases the poor translation is merely a source of amusement 
or at worst irritation. However some errors are more serious, such as when 
the phrase "must not be" is used where "is not necessarily" is meant. These 
errors are likely to cause unnecessary confusion to those at whom the book is 
aimed, that is, graduate students and nonspecialists learning the subject for 
the first time. 
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Pseudodifferential operators and spectral theory, by M. A. Shubin. Translated 
by Stig I. Andersson. Springer-Verlag, Berlin, Heidelberg, New York, 1987, 
x + 278 pp., $55.00. ISBN 3-540-13621-5 

The publishers are to be commended for making this text by M. A. Shubin 
accessible to the mathematicians who do not read Russian. It contains a fairly 
short, yet highly readable account of pseudodifferential, and Fourier integral, 
operator theory, with extensive applications to the spectral theory of linear 
elliptic equations. Let me say right away that any mathematician tempted 
to give a first course in the subject of \PDO and/or FIO should give serious 
consideration to Chapter I, plus Appendix I, of Shubin's book as a possible 
text. They present most of what is needed for a basic understanding of the 
theory in a style that is simple yet precise. They are independent of the other 
chapters, to which the reader might want to go for significant applications 
and extensions. 

There is nothing novel in the application of pseudodifferential operators to 
elliptic problems. Elliptic problems are one of the main sources from which the 


