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they are not); examples, originally due to Grima, of distinct fibered links 
with the same Alexander polynomial, and examples of nontrivial links with 
trivial fibering of the complement. Most of these are easily computed using 
the splice diagram. 

One general pattern in the study of topological properties of algebraic vari
eties is that some property is first discovered using the algebraic structure, and 
later reproved in a geometric or topological setting. Eisenbud and Neumann 
do this as well: They show geometrically that the complement of algebraic 
link fibers, the eigenvalues of the monodromy on homology are roots of unity, 
and that its largest Jordan block associated to the eigenvalue one is of size 
one. (The first two facts already had geometric proofs; the last one had been 
proved analytically by Steenbrink and later Navarro, using mixed Hodge the
ory. They also obtained a related result in higher dimensions.) 

My only major complaint with the book is that there is no index. An 
index should be easy to make in our present computer age (and was easy even 
in the past, when a student could be hired to do it). The lack of an index 
reduces the value of a book as a reference. I suspect that an index would help 
to organize such matters as definitions as well. For example, the important 
term 'solvable link' appears to be defined in the statement of Theorem 9.2, 
and the central term 'graph link' appears not to be formally defined at all; 
it is first mentioned in the body of the text in §8, without definition, but 
fortunately had already been defined—in passing—in the introduction. The 
many favorable qualities of this book more than make up for these defects, 
though. It is an excellent book for students to read, especially because of 
its collection of scattered and occasionally unknown results, for example the 
algorithm for passing from the Puiseux expansion to the polynomial. And 
lastly, there is a lengthy and superb introduction. 
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"... while, in the present state of our knowledge, many re
sults in the pure theory are arrived at most readily by dealing 
with the properties of substitution groups, it would be diffi
cult to find a result that could be most directly obtained by 
the consideration of groups of linear transformations." 
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These words were penned by William Burnside, F.R.S., Professor of the 
Royal Naval College, Greenwich, as part of the preface to the first edition of 
Theory of groups of finite order [Bl] in June of 1897. He was explaining why 
his new book included no representation theory. A representation of a finite 
group G is a homomorphism p: G —• GL(V) where GL(V) is the group of 
all nonsingular linear transformations on a finite-dimensional vector space V 
over a field. At the time of Burnside's writing, the study of group representa
tion (by linear transformations or linear substitutions as Burnside would have 
said) was in its infancy. It had been invented, at least partially, by Ferdinand 
Georg Frobenius in a series of papers on group characters (see [F, papers 53, 
54, 56]). A character is the trace of a representation, but Frobenius's approach 
was somewhat indirect in that he did not originally define characters using 
representations. Rather he was generalizing the concept used in number the
ory of a character of an abelian group. By 1897, Frobenius's work was mostly 
developmental with several interesting examples but scarcely an application. 
Burnside was openly skeptical. 

Skeptical does not mean uninterested. Certainly something in Frobenius's 
work fired Burnside's imagination. A few years later Burnside [B2, B3] pre
sented a direct development of group characters from representations. His 
presentation is not far from what we now teach in our courses. However, more 
dramatic events converted Burnside totally. In the preface to the second edi
tion [B4], written in March of 1911, he stated the reason for his omitting an 
account of group representations in the first edition "no longer holds good." 
More emphatically he wrote, 

"In fact it now seems more true to say that for further ad
vances in the abstract theory one must look largely to the 
representation of a group as a group of linear substitutions." 

In the fourteen years between the editions, Burnside's image of group the
ory had made an abrupt shift. We can only guess what thoughts had passed 
through his mind, but surely a major reason for his change of view was di
rectly connected to one of the hot topics in finite group theory at the turn of 
the century. The question concerned the orders of the finite simple groups, or 
more generally, what conditions on the order of a group together with local 
information will insure that a group is solvable. Burnside called it "the most 
general problem in pure group theory" [Bl, p. 343]. It is the problem of 
analyzing all distinct types of groups whose order is a given integer. It was 
the subject of the last chapter of Burnside's first edition. 

As background, we may recall that Sylow's theorems imply the solvability 
of groups of order pa, p a prime. In 1893 [F, paper 43] Frobenius proved 
that if the order of G is not divisible by the square of any prime, then G is 
solvable. Later he was able to generalize this result [F, paper 49]. He showed, 
as his main lemma, that if an integer m has distinct prime factors and if 
every prime factor of n is greater than the largest of those of m, then any 
group of order ran has exactly n elements whose orders divide n. In 1901, 
he applied his theory of complex characters to get that the n elements whose 
orders divide n form a subgroup of the group. Burnside had proved that if 
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all Sylow subgroups of a group are cyclic then the group is solvable. Several 
other mathematicians also made contributions to this area. 

A particularly interesting question of that time concerned groups whose 
orders are divisible by only two primes, p and q. Burnside proved in his first 
edition that any such group is solvable provided that its Sylow subgroups are 
abelian. He also presented the following theorem which generalized an early 
result, independently verified by himself and Frobenius. 

A group whose order is paqP, where a is less than 2m, m 
being the index to which p belongs (mod #), is solvable. 

In 1902 Frobenius [F, paper 65] published a generalization of this result to 
include the case a = 2ra and also the case in which G has at most pm distinct 
Sylow q-subgroups. Curiously his paper ends with a one sentence paragraph. 

"Damit ist der Beweis durch rein gruppentheoretische Be-
trachtungen gefuhrt, ohne jede Hülfe der Substitutionstheo-
rie, d.h. ohne Benutzung irgend einer Darstellung der Gruppe 
G." 

These were prophetic words, emphasizing that his result required no rep
resentation theory. Possibly in his imagination Frobenius had had a glimpse 
of what was to come. Two years later the following theorem was published. 

Every group of order paq@ is solvable [B5]. 

It has become known as Burnside's paq@ Theorem, and its proof was close 
to being pure representation theory, i.e., the character theory as developed by 
Frobenius. It was probably the first major theorem proved using representa
tions of groups. Many more would follow. 

It must have been frustrating for the group theorists of that day to have 
such a simple statement whose truth could not be demonstrated by group-
theoretic techniques. In fact, Burnside's proof was essentially the only one 
available for approximately 60 years. In the 1960s John Thompson finally 
outlined a purely group-theoretic proof. David Goldschmidt has given a fairly 
short proof in the special case that p and q are odd primes [G]. But even 
Goldschmidt's paper is not light reading. Probably Burnside's proof is still 
the best for an understanding of why the theorem is true. 

Thompson's proof had been developed from his work on the same problem 
that had concerned Burnside and Frobenius, namely the classification of the 
finite simple groups. He and Walter Feit contributed a colossal step in the 
solution when they showed that all groups of odd order are solvable [FT]. 
Representation theory played a vital rôle in the proof as well as in other parts 
of the classification endeavour. In the 1960s most group representation the
ory was still closely tied to group theory. There had certainly been many 
advances since Frobenius's first work. Many new ideas had been introduced. 
For example, Richard Brauer began his study of modular representation the
ory and block theory in the late 1930s. However Brauer, like many others, 
concentrated on character-theoretic developments and mostly regarded rep
resentations as tools for the investigation of group structures. 
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By the late 1970s, when the classification problem was winding toward its 
ultimate solution, it had become clear that representation theory had a life 
of its own. No longer the child of group theory, it had become suffused with 
ideas and techniques from many areas of mathematics. It has applications in 
many areas both within and outside of mathematics. At the A.M.S. Summer 
Institute in 1986 the participants were treated to a three-week demonstra
tion of the diversity of the modern subject. Lectures were given on topics 
ranging from the classical complex characters of solvable groups to algebraic 
singularities, line bundles, and flag manifolds. 

The most unusual feature of the books by Curtis and Reiner is that they 
give the reader a picture of the vast array of topics that can be labeled un
der the heading of representation theory. The second volume contains long 
chapters on if-theory and on class groups for group rings and orders, as well 
as somewhat shorter expositions of block theory and of the representations 
of finite groups of Lie type. Briefer, though still lengthy, chapters discuss 
rationality questions such as Schur multipliers, contributions from the repre
sentation theory of finite-dimensional algebras such as quivers and Auslander-
Reiten sequences, and results on Burnside rings and representation rings of 
finite groups. No other text comes close to covering so much ground. How
ever, even with two volumes of almost 1800 pages the books are nowhere near 
complete. Some of the most exciting areas of current research, such as co-
homological methods and the connections with the representation theory of 
algebraic groups, are given only introductions or barely mentioned. The field 
has become too big. 

When Curtis's and Reiner's first book [CR] was published in 1962 it im
mediately became everybody's standard reference. It was by far the best and 
most complete of the few texts that were available. By contrast, there are 
many books on representation theory in print today, but they are all some
what specialized, highlighting only one or only a few aspects of the modern 
theory. At the same time most of us who work in group representations are 
also specialized, and for us the new volumes by Curtis and Reiner will provide 
access to many of those topics that are outside of our areas. The text is well 
written and organized, and the approach is generally up to date. The books 
should be easily readable by students with any sort of reasonable background 
in group theory and abstract algebra. As introductions and references to the 
numerous topics that make up modern representation theory, the volumes by 
Curtis and Reiner are to be highly recommended. 

It is unfortunate that Irving Reiner did not live to see the publication of 
the second volume. He died in October of 1986 after a long illness. Reiner 
was a helpful and personal friend to many of us and a good friend of the 
mathematical community in general. We will miss him. 
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Quasiconformal mappings have played a prominent role in geometric func
tion theory for nearly fifty years. We recall that a sense-preserving diffeomor-
phism ƒ of one plane region D onto another is called a if-quasiconformal map 
if its differential f'(x), viewed as a linear map of R2 onto itself, satisfies the 
inequality 

max{||/ '(sMI; ||«|| = 1} < Kmm{\\f'(x)u\\; \\u\\ = 1} 

at every point in D. A sense-preserving homeomorphism of D into the plane is 
if-quasiconformal if there is a sequence of if-quasiconformal diffeomorphisms 
that converges to ƒ uniformly on compact subsets of D. A sense-preserving 
homeomorphism of one Riemann surface onto another is if-quasiconformal if 
all its compositions with local charts are if-quasiconformal maps in the plane. 
Finally, a quasiconformal map is a sense-preserving homeomorphism that is 
if-quasiconformal for some number if > 1. It is important to observe that 
1-quasiconformal maps are conformai. 

In 1939, a fundamental paper of Teichmiiller introduced quasiconformal 
maps to the study of spaces of Riemann surfaces. Choose a compact Riemann 
surface X of genus p > 2 and define a pseudometric on the set of all sense-
preserving homeomorphisms of X onto Riemann surfaces of the same genus 
by putting 

(1) d(f,g) = log K 

if if is the smallest number such that there is a if-quasiconformal map in the 
homotopy class of g o / _ 1 . The metric space that results from identifying ƒ 
with g when d( ƒ, g) = 0 is Teichmiiller's space Tp of marked Riemann surfaces 
of genus p. Teichmiiller proved that Tp is homeomorphic to R6p~6. 


