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Finally, for a demonstration of how to weave a spell with geometry and 
analysis on hyperbolic space, I recommend the beautiful article by F. Apery in 
Gazette des Mathématiciens (1982), pp. 57-86, entitled La baderne d'Apollon­
ius, which also provides some illustrations of the wide opportunities for com­
puter graphics in this field, beyond the current obsession with fractal curves. 
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The theory of moduli of Riemann surfaces occupies a central role in modern 
mathematics. Its origins lie in the classical theory developed in the nineteenth 
century, and it has attracted the attention of many of the outstanding mathe­
maticians of the twentieth century, including Poincaré and Hilbert at the be­
ginning of the century, Ahlfors and Bers during most of the middle half of this 
century, and Thurston and Sullivan at the present time. The subject is rich 
with deep general theories and full of interesting special cases. It has a tech­
nology of its own, but borrows extensively from other disciplines (topology, 
algebraic geometry, several complex variables) and has applications to diverse 
fields (partial differential equations, minimal surfaces, particle physics). 

One of the main objects in the theory is the Teichmüller space T(p, n) 
whose points are all the "marked" compact Riemann surfaces of genus p with 
n punctures or distinguished points. To avoid the elementary and easy to 
handle cases, one assumes that the surface has negative Euler characteristic; 
that is, both p and n are nonnegative integers with 2p —2+n > 0. By a mark­
ing on a surface, we mean a choice of a basis for the fundamental group of the 
surface. It is an important observation that the space of marked surfaces is 
easier to study than the more natural object R(p, n) consisting of conformai 
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equivalence classes of compact surfaces of finite type (p,n), that is, the space 
of all conformai equivalence classes of Riemann surfaces of genus p with n 
punctures. The space T(p, n) appears implicitly in the early continuity argu­
ments of Klein and Poincaré. It has been constructed as a real manifold of 
dimension 6p —6+2n by Fricke, who proved that it was a cell (the fact that we 
do not call these spaces after Fricke is indeed ironic but not the greatest irony 
in the subject), and by Fenchel-Nielsen (in a mostly unavailable manuscript). 
By the way, many of the early authors treat only the case of closed surfaces 
(that is, n = 0). This is the most interesting case, and the introduction of 
punctures only occasionally involves fundamentally new ideas or approaches. 
The modern theory really begins with Teichmüller who introduced a complete 
metric on T(p,n) that bears his name (1939). The metric brought quasicon-
formal mappings to the field in a very dramatic way. First, it introduced 
an important extremal problem: among all orientation-preserving topological 
mappings in a given homotopy class between two Riemann surfaces of finite 
type, find the one that is closest to conformai. Teichmüller's solution to the 
problem, while hard to follow because his sketchy arguments had numerous 
gaps (almost requiring a kind of faith to believe in their correctness), was 
brilliant. His solution is expressed in terms of holomorphic quadratic differ­
entials on the surfaces. Second, it gave a new proof of the fact that T(p, n) is 
a cell. Third, it showed the power of quasiconformal mappings and their inti­
mate connections with classical complex analysis. Almost all the subsequent 
results obtained in Teichmüller theory use quasiconformal mappings in very 
basic ways. Fourth, it motivated Ahlfors (who gave a good flexible definition 
for quasiconformality) and Bers (who introduced quasi-Fuchsian groups) both 
to establish a solid foundation for Teichmüller's claims and to go much further 
in developing the theory. 

It is useful at this point to inform the reader about two definitions. Qua­
siconformal mappings are natural generalizations of conformai mappings. An 
orientation-preserving homeomorphism is quasiconformal if it is conformai 
with respect to some Riemannian metrics of uniformly bounded eccentric­
ity (if it maps infinitesimal circles onto infinitesimal ellipses with uniformly 
bounded ratios of major to minor axes). A quadratic differential is a sec­
tion of the square of the canonical line bundle (an expression ƒ (z) dz1 that is 
invariant under changes in the local coordinate z). 

Ahlfors (1960) proved that the Teichmüller space has a natural complex 
structure. His proof uses periods of abelian differentials of the first kind. 
This theorem is not unexpected; after all, compact Riemann surfaces are 
algebraic curves and hence should form a complex space of some kind. How­
ever, the original argument is difficult, quite clever, and was not easy to 
establish. Further, the space of moduli of Riemann surfaces is not a (com­
plex) manifold. Bers (1966) embedded the Teichmüller space into the (finite-
dimensional) vector space of integrable holomorphic quadratic differentials on 
a fixed Riemann surface, as a bounded domain of holomorphy. Bers uses uni­
valent functions and Schwarzian derivatives. His methods relate Teichmüller 
theory to the classical theory of schlicht functions and mark a new appear­
ance for quadratic differentials in the theory of deformations of Riemann sur­
faces. Quadratic differentials also appear as tangent and cotangent vectors to 
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Teichmüller space and in closely related topological subjects such as measured 
foliations on Riemann surfaces. It is impossible to study Teichmüller spaces 
without both quasiconformality and quadratic differentials. Bers's results also 
introduce a natural complex boundary for Teichmüller space. The boundary 
points represent degenerate Riemann surfaces in some way. For example, Rie­
mann surfaces with nodes appear naturally as points in the Bers boundary 
of T(p,n). However, these points do not exhaust the entire Bers boundary. 
Also present are totally degenerate Kleinian groups (Riemann surfaces are 
intimately connected to various classes of Kleinian groups; however, this is a 
subject for another book), where the surface has totally disappeared but has 
left a shadow or memory. This Bers boundary is still not well understood and 
poses many challenges to today's mathematicians. There is a natural group, 
the modular group Mod(p, n), that acts discretely as a group of complex ana­
lytic isometries of T(p, n); the quotient T(p, n)/Mod(p, n) is the moduli space 
R(p, n). It follows that this moduli space is hence a normal complex orbifold. 

Every complex manifold has at least two natural metrics on it: the Cara-
théodory metric and the hyperbolic metric introduced by Kobayashi. Roy den 
(1971) established the powerful result that the Teichmüller and Kobayashi 
metrics on T(p, n) coincide. Thus the metric introduced by Teichmüller in 
a seemingly ad-hoc manner is quite natural and in fact recoverable from the 
natural complex structure. To complete this circle of ideas we mention one 
final result. Roy den also shows that Mod(p,n) is essentially the full group of 
complex analytic automorphisms of T(p,n), whenever this space is at least 
two dimensional. 

Gardiner's book treats all the topics discussed above, including the infinite-
dimensional theory whenever appropriate. The author assumes that the 
reader is familiar with basic graduate courses in analysis (both real and com­
plex) , algebra, and topology, and has some familiarity with Riemann surfaces 
and Fuchsian groups. He reviews these topics along with the necessary tools 
from quasiconformal mappings (the so-called "measurable Riemann mapping 
theorem"); some prior acquaintance with this last subject would, however, not 
hinder the reader. The author has a definite and singular point of view. His 
goal is to develop a few very basic and fundamental principles and then recover 
as much of the theory as possible as consequences of these basic principles. 
This objective leads naturally to an exclusion of certain important topics, for 
example, a detailed treatment of boundaries of T(p, n) or of degeneration of 
surfaces or of fiber spaces over Teichmüller or moduli spaces and the associ­
ated interesting and important forgetful maps. Gardiner's approach has the 
great advantage of unifying a tremendous amount of mathematics. The two 
principles naturally involve quadratic differentials and quasiconformal map­
pings. He first establishes various uniqueness theorems that follow from the 
length-area principle of Grötzsch as amplified and reinforced in the pioneering 
work of Reich and Strebel and the more recent work of Marden and Strebel. 
From these rather general results on quadratic differentials, he establishes the 
basic inequalities of Reich and Strebel that are used in the study of extremal 
quasiconformal mappings, the uniqueness part of Teichmüller's theorem on 
extremal quasiconformal mappings, the sufficiency of the Hamilton-Krushkal 
condition for extremality, and certain uniqueness theorems for quadratic 



BOOK REVIEWS 497 

differentials that involve the metric induced by these differentials. He then 
discusses a second principle that describes the connection between families of 
trivial variations of the complex structure on a given surface and infinitesi-
mally trivial (that is, trivial to first order) deformations. From this second 
motif, Gardiner establishes the existence part of Teichmiiller's theorem as well 
as the necessity of the Hamilton-Krushkal condition (among other results). It 
is quite surprising that a large part of the theory of Teichmiiller spaces is so 
intimately connected to just two important principles. The book closes with 
two chapters on quadratic differentials; the first of these develops the theory of 
Jenkins-Strebel differentials, the second develops parts of Thurston's theory 
of measured foliations. 

The above is, of course, a very inadequate summary of the contents of this 
important book on Teichmiiller theory. In establishing many of the fundamen­
tal results in the field, the author has had to deal with many topics not yet 
mentioned, for example, Poincaré series, approximation theorems for holomor-
phic functions, spaces of cusp forms, smoothness of metrics and cometrics on 
Teichmiiller space. He has reproduced simplified versions of proofs appearing 
in some original papers, substituted new proofs for some theorems, and filled 
in the details to make some arguments more accessible. This is a scholarly 
work that nicely complements the existing books on Teichmiiller theory. It is 
a worthy successor to the recently reprinted classic lecture notes of Ahlfors 
[Ah]. It covers many different parts of the theory than the books by Abikoff 
[Abh] and Krushkal [K]. It has a nonempty intersection with the more recent 
books of Strebel [S] and Lehto [L], as well as the forthcoming book of Nag 
[N]. The book by Strebel is an in-depth study of quadratic differentials, while 
the Lehto book is a more leisurely treatment of the foundations of Teichmiiller 
theory and its strong relations to the theory of univalent functions. 

Recently, I taught a semester course on Teichmiiller theory. This book 
was extremely useful as background material. It was impossible to cover all 
the material in the book, and it was necessary both to augment a number 
of topics and to treat several subjects not covered in Gardiner's treatment. 
The natural "period map" from the Teichmiiller space into the Siegel upper 
half-plane clearly belongs in any course on moduli. It shows that the complex 
structure given by the Bers embedding is the same one as the one introduced 
by Ahlfors, and hence is the natural complex structure. The infinitesimal 
form of this period map, known as the Rauch variational formula, introduces a 
name that is too often forgotten in works on Teichmiiller theory. This formula 
shows that Noether's theorem is the infinitesimal form of Torelli's theorem, 
thus tying the modern theory once again to classical concepts. Also missing 
from Gardiner's book is the fact that (the Teichmiiller curve over) Teichmiiller 
space satisfies a universal mapping property, while Riemann space does not 
(because of the existence of surfaces with nontrivial automorphisms). 

Gardiner's book is a well-written treatise that belongs in the library of 
every graduate student and scholar interested in complex analysis. It contains 
a wealth of information. Some topics are missing, of course. Together with the 
other books listed in the bibliography, this volume provides a good picture of 
the current state of a big portion of the theory of moduli of Riemann surfaces. 
The fact that more books on the subject are needed (treating, for example, 
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compactified moduli space, spaces of Kleinian groups, and applications to 
topology, geometry, and physics, in addition to some of the topics discussed 
in the last paragraph) is a sign of the vitality of the subject. 
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A submanifold of any Euclidean space has an induced metric structure, 
and it is natural to wonder about the converse: Can a given Riemannian 
structure on a manifold Mn be induced by an embedding of M into some 
Euclidean space EN? The search for local and global isometric embeddings 
has been fruitful for mathematics. However the three major advances in the 
local theory have been relatively inaccessible even to many workers in the 
field. 

In terms of partial differential equations, the local embedding problem 
reduces to solving 

(1) L^7^- = ^ 
where (g%j) is a positive definite, symmetric n x n matrix. 

When n = 1 such a solution clearly exists, and one may take N = 1. For 
n = 2 there are many special results, some of which are old [We] and others 
quite recent [Li]. The basic question is still open: Can every two-dimensional 
C°° Riemannian manifold be locally isometrically embedded in E3? 

Notice that (1) becomes determined, in the sense that the number of equa­
tions equals the number of unknowns, when N = | n ( n + 1). Most of our 
discussion will be for this dimension. Also notice that not even the case 
where g^ is real analytic is immediate. The difficulty, in classic PDE terms, 


