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Combinatorics has come of age. Just as most children pay attention pri
marily to their own interests, so the mathematical endeavor in the early years 
produces seemingly unrelated results and problem solutions. Puberty can be 
viewed as the beginning of awareness about the rest of the world, and in 
mathematics this brings survey articles that pull results together and place 
them in a common context. Finally, with maturity comes patience, yielding 
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textbooks that enable the casual mathematician to acquire knowledge about 
a new area. 

Ian Anderson's Combinatorics of finite sets brings to maturity a small but 
elegant area of combinatorics, sometimes called "extremal set theory." The 
primary object of study here is the subset lattice, which is the inclusion or
dering on the subsets of an n-set. Note that the elements of the order are 
the subsets of the underlying set of elements. Extremal set theory focuses on 
purely combinatorial extremal problems, particularly those concerning chains 
and antichains. In an arbitrary partially ordered set (henceforth poset), a 
chain is a pairwise ordered collection of elements, and an antichain is a pair-
wise incomparable collection. Like other special posets, the subset lattice is a 
ranked poset, which means it has a well-defined rank function r(x) such that 
r(y) = r(x) + 1 if a: < y and there is no element between them. We use Nk to 
denote the rank sizes, i.e., the number of x G P with r(x) = k. 

Extremal set theory grew from two fundamental results about the problem 
of finding a maximum-sized antichain in a poset; this size is called the width 
of the poset. In 1928, Sperner determined the maximum-sized antichains in 
the subset lattice. If n is even, the unique maximum antichain consists of all 
subsets of size n/2, while if n is odd we may take all those of size (n — l)/2 
or all those of size (n + l) /2, but no combination thereof. More generally, 
we say a ranked poset has the Sperner property if its width is max^iV^; i.e., 
some single rank forms a maximum-sized antichain. In 1950, Dilworth proved 
that the width of any finite poset equals the minimum number of chains 
needed to cover its elements. The relationship between these results is that 
the Sperner property can be verified by partitioning the poset elements into 
max/ciV/ç chains. 

From the mid-1960s to mid-1970s, results poured forth about antichains 
and related families in the subset lattice and other special posets. Progress 
came from Erdós, Clements, Daykin, Greene, Harper, Hilton, Katona, Kleit-
man, and later Frankl, Griggs, and many others. Many proofs are now known 
for the theorems of Sperner and Dilworth, and the different approaches stimu
lated additional research, including variations of the Sperner property, gener
alizations to the multiset lattice, which is the same as the divisibility ordering 
on the divisors of an integer, and generalizations of these ideas to k-families, 
which are collections containing no chain of size A; + 1. Anderson calls these 
collections k-unions, since they are unions of k antichains. 

The beauty of the results flowing from Sperner's Theorem is best displayed 
by LYM orders. Lubell gave a very short proof of Sperner's Theorem by a 
counting argument over all n\ maximal chains in the subset lattice. Each 
chain contains at most one element of an antichain, and an element of rank k 
lies in k\(n — k)\ of these chains. Thus, if an antichain contains a& elements 
of rank k, we have Ylakk\{n — k)\ < n\, or Eafc/(fc) ^ 1- Yamamoto and 
Meshalkin obtained similar results, and a ranked poset P satisties the LYM 
property if the condition Y^ak/Nk < 1 holds for any antichain in P. The 
LYM property clearly implies the Sperner property. One of Kleitman's major 
contributions was showing the equivalence of the LYM property to two other 
conditions. One is the normalized matching property of Graham and Harper, 
which requires for each k that \VF\/Nk+\ > \F\/Nk whenever F is a subset 
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of the kth rank and V F are those members of rank k + 1 related to some 
member of F. The third condition is the existence of a list of maximal chains 
that for each k contain each member of rank k the same number of times, 
such as the list of all maximal chains in the subset lattice. Kleitman went on 
to show, for example, that every LYM order has the strong Sperner property, 
meaning that for any k the k largest ranks form a maximum-sized Ar-family. 
(Anderson does not use this term or strict Sperner property, which describes 
posets where all maximum antichains are single ranks.) 

The major step of giving shape to the field and presenting it to the rest 
of the mathematical world was taken in the classic 1978 exposition by Cur
tis Greene and Daniel J. Kleitman, Proof techniques in the theory of finite 
sets, Studies in Combinatorics (MAA Studies in Mathematics vol. 17), edited 
by Gian-Carlo Rota. A later survey by West, Extremal problems in par-
tially ordered sets, Ordered Sets (I. Rival, éd., Reidel (1982)), took a more 
encyclopedic approach, attempting to provide an annotated bibliography of 
what was then known. Konrad Engel and Hans-Dietrich O. F. Gronau pro
vided an extremely thorough book-length treatment of much of this material, 
seeking full details and generality, in Sperner theory in partially ordered sets 
(Teubner-Texte zur Matematik, vol. 78, 1985). Also worth mentioning is 
Combinatorics: set systems, hypergraphs, families of vectors, and combinato
rial probability (Cambridge Univ. Press, 1986), by Bêla Bollobâs. Bollobâs's 
book has considerable intersection with Anderson's, and perhaps a similar 
intent. The viewpoint is different, interpreting set systems as hypergraphs 
rather than posets. Bollobâs considers a wider range of questions, but is 
considerably more terse. 

Until the publication of Anderson's book, the Greene-Kleitman article re
mained the physically and mathematically most accessible introduction to this 
engaging area. Anderson maintains the successful organization and approach 
taken by Greene and Kleitman, but the textbook format gives him room for 
both more details and more results. His presentation is patient but not me
andering. The atmosphere is indicated by the focus on "Proof techniques" 
in the Greene-Kleitman title; more important than the most general results 
are the various techniques that can be used to prove the fundamental results 
and thereby yield extensions. This explains Anderson's inclusion of multiple 
proofs of fundamental results, often in different chapters. 

Since the Greene-Kleitman paper has represented this field for so long, let 
us consider some ways in which Anderson enlarges upon it. He draws on 
the results and new proofs of the past decade that have helped to round out 
the field. LYM orders have become so fundamental that discussion of them 
is spread throughout the book. Concerning the Sperner property for special 
posets, Anderson outlines Shearer's proof of Canfield's result that for large n 
the lattice of partitions of an n-set is not Sperner, contrary to a conjecture 
that stood for ten years. 

For posets whose rank sizes Nk form a symmetric and unimodal sequence, 
the Sperner property is implied by the existence of symmetric chain decom
positions. A symmetric chain decomposition of a poset is a partition of it into 
chains that hit consecutive ranks and are symmetric around the middle rank. 
By Dilworth's Theorem, the middle rank is thus a maximum antichain, and 
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in fact a symmetric chain decomposition implies the strong Sperner property. 
Anderson's discussion of symmetric chain decompositions and their applica
tions is fairly thorough. There are a large number of special posets for which 
the existence of symmetric chain decompositions is an open question. Ander
son mentions the most important: L(ra, n) has several descriptions, one being 
the poset of nonnegative integer sequences 0 < ai < - — < am < n, ordered 
by â < b if ai < bi for all i. Anderson includes an outline of Lindström's 
proof that L(3,n) has such a decomposition; West and Riess independently 
proved it for L(4,n). Stanley has used powerful and difficult results in alge
braic geometry to show that various posets, including Z/(ra,n), are Sperner. 
These methods do not yield symmetric chain decompositions. Since they are 
algebraic rather than combinatorial, they are beyond the scope of this book, 
and Anderson mentions but does not explore them. 

The discussion of correlational inequalities is also thorough and particularly 
welcome, since many important results about these have appeared since the 
Greene-Kleitman paper. Given two unrelated elements x, y in a poset P , the 
probability of x < y is defined to be the fraction of the linear orders consistent 
with P in which x < y. The outstanding result in this area is the XYZ In
equality, which states that in any P the events x < y and x < z are positively 
correlated, i.e., knowing x < z makes it more likely that x < y. Anderson 
gives a complete proof of this, starting with the very powerful Ahlswede-
Daykin Inequality (for subsets). Given a function ƒ on a poset, let f(X) for 
a collection X denote J2xex /(x)> ^ X V Y = {x U y: x G X, y e Y}, and 
let X A Y = {x D y: x e X, y E Y}. The Ahlswede-Daykin Inequality, called 
the Theorem of the four functions by Bollobâs, says that if a, /?, 7, 8 are four 
nonnegative functions on the subset lattice satisfying a{x)(3(y) < 7(2 U y) 
8{x H y) for all subsets x, y, then a(X)P{Y) < i(X V Y)6(X A Y) for all col
lections X, Y of subsets. Its many applications include the FKG Inequality, a 
poset generalization of Chebyshev's Inequality originally discovered in statis
tical mechanics. Shepp used the FKG Inequality to prove the XYZ Inequality. 

One of the strongest statements about the order relation on subsets is 
the Kruskal-Katona Theorem; Anderson presents this and its extension to 
multisets by Clements and Lindström. The chapters concerning these and 
their applications are harder than the earlier ones. The Kruskal-Katona The
orem answers the question of how to choose m fc-element subsets of a set 
to minimize the number of k — 1-element subsets contained in one or more 
of them. The answer is to take the first m A;-element subsets in the lexico
graphic ordering of their representation as binary vectors. Extremal problems 
like these ultimately came from coding theory. Among the applications of the 
Kruskal-Katona Theorem is the Erdös-Ko-Rado Theorem, which itself has 
many interesting proofs and extensions. The EKR Theorem states that for 
k < n/2 the maximum-sized collection of pairwise-intersecting A;-subsets of a 
n-set consists of all the fc-sets containing one particular element. 

Finally, Anderson closes the book with the important Greene-Kleitman 
extension of Dilworth's Theorem to fc-families in arbitrary posets. Given 
any chain partition and any (maximum) A;-family, each s-element chain in 
the partition contributes to the A;-family no more than min{A;, s} elements. 
(This proves that a symmetric chain decomposition implies the strong Sperner 
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property.) Greene and Kleitman proved that for any k and any poset there 
exists a chain partition for which equality holds; this is called a k-saturated 
chain partition. In fact, they proved that for each k there exists a partition 
that is both k- and k + 1-saturated. The original proof was quite long. Ander
son presents the shorter recent proof; Saks showed that fc-saturated partitions 
exist, and then Perfect used this to get the simultaneous k, k + 1 property. 

The variety of proof techniques available in this subject and Anderson's 
focus on these techniques make his book an excellent text for a topics course 
in discrete mathematics. I ran such a course in 1980 based on the Greene-
Kleitman article. After presenting the fundamental material, it was necessary 
to direct the students to the literature to cover material for which Greene and 
Kleitman did not have room. Anderson has now done this job for us, making 
the material easy to teach. The typography is very attractive, and the proofs 
are thorough and readable. Also important are the 156 exercises, with hints or 
solutions at the back (this is perhaps better for the mathematician interested 
in a new area than it is for teaching). Most of the exercises seem relatively 
easy. They incorporate many of the particular results in the literature that 
do not fit in the text. From a teaching viewpoint, one possible complaint is 
that Anderson defines terms when needed, but he does not collect them in a 
glossary; this may cause frustration for some students. 

Anderson takes care to give a self-contained presentation. A particularly 
notable example of this is his inclusion of proofs for two fundamental results 
in transversal theory. Given a collection of n sets, a system of distinct repre
sentatives (SDR, also called transversal) is a selection of n distinct elements, 
one from each set. The result popularly known as Hall's Marriage Theorem 
asserts that the obvious necessary condition is also sufficient: the union of any 
k of the sets must have at least k elements. This result is used in construct
ing chains to prove the equivalence of the LYM and normalized matching 
properties. An easy extension of it is in fact equivalent to Dilworth's The
orem; Anderson gives us one direction of the equivalence in addition to an 
independent proof of each. 

The other result is less well known; it is a necessary and sufficient condition 
for the existence of a common SDR for two collections of sets. Griggs used this 
to show that if an LYM order has rank size {Nk} that form a symmetric and 
unimodal sequence, then it has a symmetric chain decomposition. Anderson 
neglects to mention that this result gives the only known proof that the lattice 
of subspaces of a finite vector space, ordered by inclusion, is a symmetric 
chain order. Explicit construction of symmetric chain decompositions for 
these posets is still sought. Anderson misses another chance to tie the topics of 
the book together by not pointing out that a symmetric chain decomposition 
is a completely saturated partition, i.e., ^-saturated for all k. The result just 
mentioned then suggests one of the most tantalizing open questions in this 
area; does every LYM order have a completely saturated partition? 

Anderson says very little about lattices; in fact, he defines lattice and 
distributive lattice as an aside immediately after stating a result about them. 
Lattices can be avoided, if desired, but this makes it difficult to give an appre
ciation of the original proof of the Greene-Kleitman Theorem or why order 
ideals and the special posets in Sperner theory are of such interest. Some 
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results, such as the Ahlswede-Daykin Inequality, reach their full generality 
and naturalness in the setting of distributive lattices. I have found it ped-
agogically helpful to include a unit on distributive lattices before presenting 
this inequality to students. 

It is also possible that, in a long semester, an instructor may not want to 
work through all the details of extremal set theory, and instead include some 
related topics with a slightly different flavor. In addition to including some 
lattice theory, one can move on from the linear extensions of the XYZ Conjec
ture to discuss dimension theory of posets. Later, after becoming thoroughly 
familiar with subsets and binary vectors via the Kruskal-Katona Theorem, one 
can finish the course with a unit on coding theory. I will take this approach 
in my next graduate course. 

In packing a well-developed subject into 250 pages, one must make choices; 
these will never please everyone, and quibbling wastes time. On balance, one 
is hard put to find complaints about this well-written and thorough book. 
It is a valuable addition to the literature, it will make it easy for interested 
mathematicians to acquire a new specialty, and it brings another area of 
mathematics into the accessible graduate curriculum. 
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As a subject Stochastic Geometry surely existed (albeit anonymously) be
fore this term first appeared in a title of a collection of papers [1] edited 
by E. F. Harding and D. G. Kendall in 1974. Numerous problems (and of 
course less numerous solutions), which in retrospect should be attributed to 
this field, have been discussed in countless papers scattered within journals 
and books too often devoted to nonmathematical applications and therefore 
obscure from the standpoint of a pure mathematician. 

In many cases the authors of these papers were equipped merely with the 
tools of classical geometrical probability theory among which the notions of 
uniform distribution and independence were the basic. And yet their objec
tives were substantially more complicated concepts of what later came to be 
known as Stochastic Geometry. In the lucky cases the deficiency in tools was 
compensated by intuition. 

Terminological ambiguity was quite widespread. For instance, within a pa
per considering random finite arrays of points the term "distribution" could 
simultaneously mean (a) the realization at hand, (b) the distribution of the 
typical point in the array, (c) a statistical estimate of (b), or (d) the distribu
tion of the underlying point process. This terminological and conceptual mess 


