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From [PI]: "At the turn of this century, I. Fredholm created the deter
minant theory of integral operators. Subsequently, D. Hubert developed the 
theory of bilinear forms in infinitely many unknowns. In 1918 F. Riesz pub
lished his famous paper on compact operators (vollstetige Transformationen) 
which was based on these ideas. In particular, he proved that such operators 
have an at most countable set of eigenvalues which, arranged in a sequence, 
tend to zero. Nothing was said about the rate of this convergence (emphasis 
the reviewer's)". 

"On the other hand, I. Schur had already observed in 1909 that the eigen
value sequence of an integral operator induced by a continuous kernel is square 
summable. This fact indicates that something gets lost within the framework 
of Riesz theory. The following problem therefore arises: 

Find conditions on the operator T that guarantee that the eigenvalue se
quence (Xn(T)) belongs to a certain subset of Co, such as lr with 0 < r < oo." 

(Here, CQ denotes the space of null sequences with the sup norm and lr the 
space of r-summable sequences with norm ||(an)||r = (X^Li K D 1 ^ ) ' 

This is the basic idea of the book under discussion. 
Paraphrased from [R]: Cauchy proved that if /(A) = Xn—ti\n~1 • • -±tn = 0 

is the characteristic equation of an n x n matrix A then ti is the sum of all 
the principal 2-rowed minors of A. Thus the first coefficient t\ is given by 

tl = ^11 + Ö22 + * • • 4- Q>nn 

and is called the trace of A. Of course t\ is also the sum of the roots of ƒ (A), 
i.e., the sum of the eigenvalues of A (counting multiplicities). Thus, in the 
matrix setting, trace is linear (sum of diagonal elements) and is also the sum 
of the eigenvalues. All of this extends naturally to finite rank operators on 
paired linear spaces [E,E']\ Every finite rank operator T: E —+ E can be 
written 

n 
Tx = ^fi{x)xi, heE', Xi,x€E. 

i-l 

The number 
n 

0-trace T = ] P fifa), 

the "functional trace," is independent of the finite representation. 
Letting F(E) denote the finite rank operators on E, 0-trace as defined 

above is a linear functional on F(E). Naturally one seeks topologies on F so 
that "0-trace" extends to a continuous linear functional on the closure F of 
F. The other natural questions, of course, are 
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(i) Does the "spectral trace", cr-trace T = 2 Ai(T), (A»(T)) the eigenvalues 
of T, make sense? 

(ii) If a-trace exists is it linear? Is it continuous with respect to the given 
topology on Fl 

(iii) If 0-trace and cr-trace both exist are they equal? 
Finding (various) answers to these questions is the subject of this impressive 

book. 
The natural starting place is Hubert space. In 1936 Murray and von Neu

mann [M] isolated what they called the "trace class" operators on Hubert 
space (more or less) as follows: 

For T G L(H), the bounded linear operators on a Hubert space if, let 

an(T) = \n{y/rF), 

where, as usual, An(-) are eigenvalues and \/TT* denotes the unique positive 
square root of TT*. The an(-) are called the singular numbers of the operator 
(the s-numbers of the title). The trace class operators on if, Si (if), are those 
operators 

Si (if) = J T e L(H): <n(T) = f ] an(T) < +oo 1. 

Letting 

S2(H)=\TeL(H):a2(T)= ( f > „ ( T ) 2 ) < +00 1 , 

we obtain the Hubert-Schmidt operators. 
It is readily seen that 

Si(ff) = S 2 (H)oS 2 (ü ) , 

i.e., every trace-class operator is the composition of two Hubert-Schmidt op
erators (the original definition of trace-class) and conversely. On the other 
hand, these operators are precisely those admitting a representation 

00 00 

(N) T ( x ) = J2 M*)i *n ; Yl II/n| | | |Zn| | < + 0 0 . 
n = l n = l 

It turns out that 
oo 

0-trace T = ] P fn{xn) 
n = l 

is independent of the representation (N) and moreover, 

|0-trace T\ < <TI(T) = a2 o<r2(T), 

where cr2 o <72(T) = inf cr2(A)<72(£). Here, the infimum is over all representa
tions T = AJB, A, B Hubert-Schmidt operators. 

The most fundamental relationship between An(T) and an(T) was discov
ered by H. Weyl [W] in 1949: For a compact operator T on Hilbert space 

(w) nw^i^n^-
i=l i=l 
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Here the (At(T)) are ordered by decreasing modulus and counting multiplici
ties. This result is now called the (multiplicative) Weyl inequality. It follows 
from (W) that for 0 < p < +00 

00 00 

X>n(T)p> < X>n(:zy. 
n = l n=l 

So, for trace class operators, the eigenvalues (An(T)) are absolutely summable 
and thus <r-trace T exists in this case. However, it wasn't until 1959 that 
Lidskii [L] filled in the gap 

0-trace T = <j-trace T 

for trace class operators on Hilbert space. We should mention that Grothen
dieck [G2] said it was true as early as 1955! 

With the Lidskii result the Hilbert space picture became clear. 
Now, as usual, the game is to move from this very favorable Hilbert space 

setting to that of Banach spaces. 
The expression (N) makes sense in any Banach space and on arbitrary 

Banach spaces, Grothendieck [Gl, G2] called such operators nuclear. (Ruston 
[Ru] introduced a similar concept.) Moreover, Grothendieck showed that 

00 

£ |An(r)|
2 < +00 

n = l 

is the best one can say for eigenvalues of nuclear operators on C(K) or L\ (/i)-
spaces. He also showed that 0-trace T, X^Li fn{xn), is intimately connected 
with the metric approximation property. An example of Enflo [E] showed 
that not all Banach spaces have this property. I've omitted definitions and 
rearranged history a bit here in order to make the next statements. 

Thus, the nuclear operators, while generalizing the Von-Neumann-Murray 
trace class to Banach spaces, turned out to be a poor generalization from 
the point of view of eigenvalue distribution and traces. Something else was 
needed for this direction! 

In 1957 D. Eh. Allakhveidiev [A] in "an exotic journal" (quoted from [PI]) 
proved that in Hilbert space 

(A) (An(VTT^) =) ttn(T) = inf{||T - A|| : rank A < n}. 

The expression on the right makes sense in any Banach space and led Pietsch 
[P2] to define the approximation numbers of an operator on a Banach space 
by expression (A) and to define for a Banach space X 

Sp(X) = {TeL(X): Y^<*n(TY< +00}. 

Thus Si generalizes the trace class and S2 generalizes the Hilbert-Schmidt 
operators to Banach spaces. We remark that for any Banach space X 

S1(X)CN(X) 

but, unless X is a Hilbert space, the containment is proper. 
Moreover, S2 is a completely different generalization of Hilbert-Schmidt 

operators to Banach space from that given earlier by Grothendieck [G2]: 
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T G L(X, Y) is absolutely two summing (Grothendieck: semi-integral a gauche) 
provided there is a K > 0 such that for z i , . . . , xn G X 

/ n \ 1/2 / n \ V2 

(2-S) £ l M 2 < * sup £|/(*,)|2 • 
Vèt / II/II=I Vet / 

The class of these operators is denoted by ^ ( X , Y). The smallest such K 
is the 2-summing norm ^ ( T ) . (Replacing 2 by p in (2-S) defines the class 
np(x,Y)). 

Denote by II2 o 11%(X) those T G L(X) for which there is a 7 (which 
may change with T) and A eYl2{X,Y), B e U2{Y,X) with T = BA. Then 
II2 oIl2(X) also generalizes "trace class" to Banach spaces. Again we empha
size that for Banach spaces Si, n2oIl2 and N are in general different animals. 
But, remember, in the words of Barry Simon [S] "operator theory on Banach 
spaces is likely to be a zoo!" 

König [KÖ2] proved that for T G Si{X) or T G ü 2 o U2{X) 
00 

0-trace T = a-trace T = ] P An(T). 
n = l 

These results and many others are presented in this book. Aside from the 
questions alluded to above, the book under review addresses the following 
general problem (slightly rephrased from earlier): 

"Given a class of operators A (technical term: Ideal) on a Banach space X 
what is the eigenvalue distribution of operators in A? Generally the optimal 
Lorentz space lVA is found, i.e., T G A(X) (operators with some specified 
property) implies (Àn(T)) G lVA and the exponents p, q are optimal for the 
class A. (The Lorentz space lv,q consists of all (complex) sequences (an) such 
that (n1/p-1/<?an) G lq. An appropriate sup is required if q = +00.) 

THE TOOLS. Some facts used are standard: e.g., the structure of the 
underlying space (Lp(/z)-spaces, Sobolev or Besov spaces) and the structure 
of the operator (classical integral operators on Lp given by a kernel K with 
various smoothness properties). A special case of this is convolution opera
tors on Lp. In this important case the eigenvalues of a convolution operator 
27(0) = / * 9 are just the Fourier coefficients of ƒ. Standard interpolation 
methods are used throughout. Also the theorem on tensor stability on Holub 
[HI, 2] (T G IIp(Xi, Yi), S G ÜP(X2, Y2) implies 

T <g> S G UP{X1 <8>e X2, Y1 <8>e y2) 

and 7TP(T ® S) < 7rp(T)7rp(S)) plays an important role. (This symbolism 
denotes the injective completion of X (8) Y.) 

Other important tools are the standard inequalities of Banach spaces, e.g., 
Holder, Kinchine, etc. More recently developed tools, essentially introduced 
by König [Köl, KÖ2] and Pietsch [P2, P4], are used extensively. The sim
plest idea used is that of Related Operator [P4]: If T = BA, A G L(X,Y), 
B € L(Y,X), then A and B are related operators. (That is, every pair (A, B) 
with A in L(X,Y) and B in (Y,X) is a related pair!) The utility of this 
notion is that for related operators A, £ , AB and BA have the same nonzero 
eigenvalues with the same multiplicities. In fact they have the same spec
trum. Actually Sylvester has proved this result for matrices as early as 1883! 
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This notion of related operators, simple as it is, provides quick proofs, for 
example, of the Grothendieck result mentioned earlier: If T G N(X) then 
5T=1 |A«(T)|2 < +00. 

Probably the principal tool employed is the generalized Weyl inequality. 
Pietsch, in a series of papers, developed an axiomatic approach to s-numbers. 
The approximation numbers, an(T), are the largest (under coordinate-wise 
ordering as sequences) s-numbers on Banach spaces. There are (too) many 
of these s-number sequences so we will not give precise definitions. For the 
record, in [PI] nine such sequences together with generalizations are intro
duced. Luckily these nine s-number sequences coalesce on Hubert space to 
the familiar An(\/TT*). However, the Weyl numbers, discovered by Pietsch, 
are truly important. The nth Weyl number of T G L(X, Y) is defined by 

xn(T) = mp{an(TA): A G L(l2,X), ||A|| < 1}. 

Concerning these numbers Pietsch proved the following [P3]: Let T be a 
compact operator on a Banach space X. The eigenvalues of T satisfy 

niAi(r)|<(2e)"/2n^(r), 

where the (A^(T)) are arranged by decreasing modulus and counting multi
plicities and (ii(T)) denotes the doubled sequence 

x1(T),x1(T),x2(T),x2(T),.... 

I had to explain to a seminar once that the inequality did not mean to square 
the Xi(T); for example, if n — 5 we have 

H |A,(T)| < (2e)^2x1(T)^x2(T)2x3(T). 
i=l 

In particular this generalized Weyl inequality allows one to deduce the 
important fact that if (xn(T)) is in the Lorentz space lVA then so is (An(T)). 

To reiterate, this inequality (with variations) is the main tool of the book. 
Another useful tool, due to König [Köl, KÖ2], is that of Uniform Riesz 

type 1: An operator T on X is a Riesz operator if T — XI has finite dimensional 
kernel and closed finite co-dimensional range for each nonzero complex A. In 
particular, the spectrum of such operators consists of eigenvalues of finite 
multiplicity and has no limit points except (possibly) zero. 

I can't put it off any longer: for arbitrary Banach spaces X, Y let A(X, Y) 
be a subset of L(X, Y) that is closed under addition, contains the finite 
rank operators, and is closed under composition, i.e., if R G L(Xo,X), S G 
L(Y,Yo), T G A{X,Y) then STR G A{X0,Y0). Let a be a quasi-norm satis
fying 

a(a<8>y) = \\a\\ \\y\\, where a<&y is the rank one operator x —» a(x)y, a G X', 
y e Y; 

a(S + T) < K[a(S) + a(T)], S,T € A; and 
a(STR) < \\S\\ \\R\\ot{T), for T G A[X,Y). 

Then (A, a) is called an ideal of operators. An ideal (A, a) is of uniform Riesz 
type 1 if: 
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(a) A(X) consists only of Riesz operators and there is a C (depending on 
X, a) such that T G A[X) implies £ ~ = i \*n(T)\ < Ga{T)\ and 

(b) if T, Tn G A(X), e>0 then limn_>oo a(T - Tn) = 0 implies there is an 
AT such that J2°°=N \*j{Tn)\ < e for all n. 

The importance of this idea is the following result of König [Kol]: If 
(A, a) is an ideal of operators of uniform Riesz type 1 then the spectral sum 
X^°=i An(-): (A, a) —• C (complex numbers) is a-continuous for all Banach 
spaces X. 

This result is crucial to the theory of trace ideals. The ideal (A, a) is a trace 
ideal provided for all Banach spaces X, Y the finite rank operators F(X, Y) 
are o-dense in A(X,Y) and the functional trace 0-trace(-): F(X) —> C is 
a-continuous. 

MAIN RESULT. If (A, a) is a trace ideal of Uniform Riesz type 1, the 
Lidskii trace formula 

oo 

0-trace T = a-trace T =J2 Xn(T) 
n=l 

holds for all Banach spaces X and all operators T G A(X). Thus (finally) the 
book under discussion seeks to find trace ideals of uniform Riesz type 1. 

Important examples are II2 o II2 and Si mentioned earlier. 
AXIOMS AND ALL THAT. Most of the above is in the mathematical main

stream. The author in his axiomatic way defines a (generalized) trace r on 
an ideal (A, a): 

r(a (8) x) = a(x) for a G X', x € X', 

T(ST) = T(TS) for T G A(X,Y), S G L(Y,X); 

T(S + T) = T(S) + T(T) for 5 , T e A(X); and 

r(AT) = Ar(T) for T G A(X), A G C. 

We mention here that there is a wild example due to Kalton [K] (remember 
we're in a zoo) of an operator ideal (A, a) supporting many different contin
uous traces! 

THE COMPETITION. All in all, this is a wonderful book. It is definitely 
not a sequel to the author's "Operator Ideals." Although the latter book has 
been made a principal reference to [PI] it is really not necessary and overlap 
has been kept to a minimum. "Operator Ideals" uses excessive notation and 
hence, is difficult to read. This is not the case here. Notation can be a 
problem: I don't like, e.g., «£,$ o H o ( n 2 ) $ = ( n 2 ) $ n (p. 106) or ttC£p" 
(p. 278). Although the meanings are clear in context, a few words wouldn't 
hurt. For the most part the notation is, however, straightforward and highly 
readable. This book is definitely not in competition with "Operator Ideals." 

However, it is definitely in friendly competition with Hermann König's 
"Eigenvalue Distribution of Compact Operators" [Köl]. Here we have 
a real mutual admiration society. Pietsch refers to König /(n)-times and 
König refers to Pietsch ^(n)-times, the functions are strictly increasing, and 
limn^oo f(n)/g(n) = 1. 

The intersection of these books is quite large but the emphasis is totally 
different. 
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The historical survey is Pietsch's book is worth the price of the book. 
Covering the period 1646-1986 this history is scattered with often amusing 
quotes and anecdotes of the mathematicians involved. This survey should be 
of interest to all mathematicians and not limited to operator theorists. 

The bibliography of [PI] is also an important document. Listing 82 books 
and monographs and 366 papers covering the spectrum from D'Alembert 
(1743) to Pietsch (1986). 

What more can I say. König's book is fit for a king—Pietsch's book is 
peachy! 

FROM THE PREFACE OF [PI]: "Many classical treatises on integral equa
tions . . . were published either in Cambridge or Leipzig. Therefore I regard it 
as a good omen that this monograph will be (now is: Reviewer) jointly issued 
by publishing houses in these cities. Moreover, in my opinion such undertak
ings are valuable contributions to scientists and editors to the realization of a 
peaceful coexistence of mankind." 

Right on Professor Pietsch! 
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In the summer of 1959 I visited the Mathematics Department in Berkeley 
for the first time. There was a summer-long seminar in functional analysis 
that year, and practically everyone working in Banach algebras and associated 
topics spent some time there. I met Errett Bishop at one of the post-seminar 
teas, and we talked of problems in several complex variables related to function 
algebras. He asked me whether or not I knew if any analytic polyhedron in 
a complex manifold of dimension n could be approximated by one defined by 
only n functions. I hadn't a clue, and I asked him why he supposed such a 
thing should be true. His answer: "Well, for a projective variety of dimension 
n, it is true that almost every projection to Pn is of degree n, and that's really 
the same thing for this special case." I was unable to see the connection, and, 
being a brash upstart fresh out of MIT, I assumed that there wasn't one. We 
passed on to a discussion of minimal boundaries; that spring I had studied his 
paper on this subject and was very impressed by the appearance of "hard" 
analysis in what I thought was a subject in "soft" analysis. I wanted to 
calculate the minimal boundary of analytic polyhedra. Errett instantly knew 
where I was stuck, and suggested that I needed to understand better how to 
cut down representing measures using peak sets. 

Several months later, while writing up a set of notes on analytic spaces, I 
finally understood Bishop's connection between generic projections of projec
tive varieties and (what later became known as) special analytic polyhedra. 
I discovered how easy it was to extend known theorems for the polydisc to 
analytic covers of the polydisc, and that his idea, if true, amounted to the 
assertion that any Stein space could be approximated by analytic covers of 
polydiscs! What a potent tool! All theorems proven locally for analytic spaces 
by means of the parametrization theorem could now be proven for arbitrarily 
large domains on Stein analytic spaces. I called him to tell him about my 
discovery. He seemed pleased and interested and added this: "Furthermore, 
if I can see how to convert an almost proper map to a proper one, all these 
theorems will extend to the whole Stein space, and furthermore, provide an 
embedding into Cn ." "You mean you can prove Remmert's theorem?" I 
asked. He replied that he thought so. 

In that way began one of the most important mathematical friendships of 
my career. For most of the following two years, Errett Bishop was a member of 
the Institute for Advanced Study, and I was an assistant professor at Princeton 


