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In the summer of 1959 I visited the Mathematics Department in Berkeley 
for the first time. There was a summer-long seminar in functional analysis 
that year, and practically everyone working in Banach algebras and associated 
topics spent some time there. I met Errett Bishop at one of the post-seminar 
teas, and we talked of problems in several complex variables related to function 
algebras. He asked me whether or not I knew if any analytic polyhedron in 
a complex manifold of dimension n could be approximated by one defined by 
only n functions. I hadn't a clue, and I asked him why he supposed such a 
thing should be true. His answer: "Well, for a projective variety of dimension 
n, it is true that almost every projection to Pn is of degree n, and that's really 
the same thing for this special case." I was unable to see the connection, and, 
being a brash upstart fresh out of MIT, I assumed that there wasn't one. We 
passed on to a discussion of minimal boundaries; that spring I had studied his 
paper on this subject and was very impressed by the appearance of "hard" 
analysis in what I thought was a subject in "soft" analysis. I wanted to 
calculate the minimal boundary of analytic polyhedra. Errett instantly knew 
where I was stuck, and suggested that I needed to understand better how to 
cut down representing measures using peak sets. 

Several months later, while writing up a set of notes on analytic spaces, I 
finally understood Bishop's connection between generic projections of projec
tive varieties and (what later became known as) special analytic polyhedra. 
I discovered how easy it was to extend known theorems for the polydisc to 
analytic covers of the polydisc, and that his idea, if true, amounted to the 
assertion that any Stein space could be approximated by analytic covers of 
polydiscs! What a potent tool! All theorems proven locally for analytic spaces 
by means of the parametrization theorem could now be proven for arbitrarily 
large domains on Stein analytic spaces. I called him to tell him about my 
discovery. He seemed pleased and interested and added this: "Furthermore, 
if I can see how to convert an almost proper map to a proper one, all these 
theorems will extend to the whole Stein space, and furthermore, provide an 
embedding into Cn ." "You mean you can prove Remmert's theorem?" I 
asked. He replied that he thought so. 

In that way began one of the most important mathematical friendships of 
my career. For most of the following two years, Errett Bishop was a member of 
the Institute for Advanced Study, and I was an assistant professor at Princeton 
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University. We spent almost every day together discussing complex analysis, 
function algebras, and algebraic geometry. At times Errett would say things 
that assumed connections I had no idea how to establish. Some time later I 
would grasp the significance; once understood, the clarity of his vision would 
almost frighten me. Those visions provided me with deep insights into my 
own work, and often directed me to the solutions of my problems. Other 
times Errett would present a detailed proof to me: the beauty of his logical 
precision, and the simplicity of his exposition were striking. In this time I 
also learned that when Errett said that he thought he could prove something, 
he meant that he could prove it, but that he was not yet happy with the 
exposition. 

Those days are long gone, and now I am writing a review of his Selected 
Papers. These papers have been imprinted in my memory for over twenty 
years and it is difficult now to reread them in an attempt to recreate the 
freshness and vitality they once had for me. There is an excellent description 
of the mathematics of Errett Bishop in the essay in this volume by John 
Wermer. The collection of essays in Errett Bishop: Reflections on Him and 
His Research [EB], also give a valuable account of his work. I cannot improve 
on those articles. Instead, I shall concentrate on the impact of Errett Bishop's 
ideas and way of thinking. 

In the sequel I shall be referring to articles which are in this volume as 
well as elsewhere. Numbered references are to the bibliography in Selected 
Papers (page xxiii), and letter references are to the bibliography to follow. 
Originally I compiled a bibliography of works by other authors that were 
significantly influenced by Bishop's work. When that reached eight pages, I 
decided instead for a list of works to which reference was made in the text; 
the result therefore appears to be a random selection from what was first 
intended. I shall quote facts and theorems in an attempt to give a flavor of 
what is being asserted, and without proper regard to mathematical accuracy; 
I hope that such indiscretions will not offend the experts. 

1. Approximation theorems on Riemann surfaces. Let S be a Rie-
mann surface and R an algebra of holomorphic functions on S. Let us assume 
that S is i2-holomorphically convex; i.e. (although this is not the description 
used by Bishop), for any discrete set D on S, there is an ƒ in R such that 
ƒ (D) is a discrete set in the plane. It is an easy consequence of Cartan's The
orem B that there is an analytic space S' and a map of S onto S' which makes 
just the point identifications made by R so that R appears as the algebra of 
holomorphic functions on S'. This is true in all dimensions, and a proof of 
the more general result appears in [16] and [R]. We shall return to this below. 
My point here is that in 1957 Theorem B was not the household word it had 
become by the early '60s, and in [2] Bishop gives a function-theoretic proof 
of this result. His idea (one already put to good use in another sequence of 
papers by John Wermer [Wl, W2]) was to concentrate on the measures on 
compact subsets of S annihilating R. The characterization of such measures 
became a central theme of Errett's work; in fact, in the whole business of 
function theory on Riemann surfaces this became the main issue (for exam
ple, see Carlesoii's proof of the first Mergelyan theorem [C]). Papers [3, 4, 
11] are ever-expanding generalizations of the F. and M. Riesz theorem, [17] 
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demonstrates that the Rudin-Carleson theorem is a functional-analytic corol
lary of the F. and M. Riesz theorem, and [5, 10] also proceed along the same 
lines. 

But in [2], this concentration of attention to annihilating measures pro
duces in addition a very strong approximation theorem: let S and R be as 
above. For C a compact subset of 5, let A(C) be the algebra of continuous 
functions on C that are analytic at interior points of C. Then there is a finite 
number of linear conditions such that every function in A(C) that satisfies 
these conditions is approximate by functions in R. This is a generalization 
of Mergelyan's approximation theorem on the plane. 

A few years later we could see clearly that Theorem B was hiding in this 
paper after all: Lemma (6) (now known as "Bishop's splitting lemma") is 
dual to the vanishing of the first cohomology group of the structure sheaf (on 
S') associated to R. Vanishing of cohomology is essentially what one needs to 
show that what you can do locally can be done globally. Here, the splitting 
lemma is the tool that localizes the problem so that Mergelyan's theorem 
can be quoted. Later, the same kind of localization by dualizing Theorem B 
appears in the work of Douady [D] and Kerzman [K]. But by the mid '60s 
there was already much evidence that the dual approach was powerful in one 
complex variable, and it was hoped to be as productive in several variables. 
We even spent some idle time talking of homology of cosheaves, but this led 
nowhere. 

Bishop alludes to this failure in [19] where he points out that "analogous 
methods are doomed to failure, as a modification of an example of Wermer 
[W3] will show." In this paper Bishop reconsiders S and R as above, but this 
time he drops the assumption of holomorphic convexity. In the papers [Wl, 
W2] John Wermer showed how, by concentrating on explicit descriptions of 
representing measures, one could construct little pieces of Riemann surfaces 
throughout the spectrum of algebras of functions defined by analytic functions 
on a Riemann surface. These results lead one to believe that any algebra of 
analytic functions on a Riemann surface S can be realized as the algebra of 
functions on another Riemann surface Sf. Of course now more is involved 
than making some identifications; great pieces of Sf need to be constructed 
(for example, if R is the algebra of polynomials, and S is any open set in 
the plane, clearly S' consists of S together with all bounded components of 
the complement of S). In [19], Bishop shows that this can be done, using 
the analysis of representing measures much as did Wermer. In the words of 
Bishop: "The present paper carries the theory further in certain directions 
than did Wermer's work and develops some of the material more systemati
cally. In particular a definitive theorem [that described above] about algebras 
of functions on Riemann surfaces is obtained." 

A crucial tool in the construction of analytic structure is to find a function 
with discrete level sets (already utilized by Wermer) in the spectrum. Bishop 
hoped that this had a generalization to several variables, something like this: 
Now if R is an algebra of functions, and F = (ƒ*, . . . , fk) is a fc-tuple of 
functions in R, p a point in the spectrum S of R, and p is an isolated point 
of F - 1 (F(p) ) , then there is a little piece of an analytic space in S through 
p. This is unfortunately untrue, but enough of it appears in [21], providing 
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an alternative proof of Oka's pseudoconvexity theorem [O]. But more of this 
later. 

2. Uniform algebras. The great strength of the work of Bishop and 
Wermer (and others) in complex analysis is that they were able to perceive 
problems from the point of view of functional analysis, allowing them to isolate 
the nuggets of hard analysis required to solve the problem. They were then 
able to attack the hard problems with their customary joy and abandon, and 
eventually crack them. The central approach was the Gelfand theory of Ba-
nach algebras: in particular, algebras of continuous complex-valued functions 
on a compact space closed in the topology of uniform convergence. "Since 
the usual terms for these algebras (sup. norm algebras or function algebras) 
are not euphonious, we shall call them uniform algebras.1'' With this sentence 
Bishop in 1965 gave them the name that is now in common usage. The two 
main examples were C{X) (all continuous functions on X) at one extreme, 
and at the other the closure of the algebra of holomorphic functions on a com
pact set in a Stein space. In those days every example we had was a pastiche 
of these two examples, and it was easy to believe that that was all there was. 
In [12], Bishop gave the first theorem attempting to verify this belief: if A 
is a uniform algebra on X, we can partition X according to the level sets of 
the real-valued functions in A, so that for every continuous function ƒ on X, 
which on every such level set coincides with a function in A, we have that ƒ is 
in A. Now it remains to show that if a uniform algebra has no real functions, 
then there is analyticity on most of X. It turns out that this is far from true, 
but some of the most telling theorems along this line are in Bishop's papers 
[19, 21, 22, 24]. 

If A is a uniform algebra on X, and h is a complex homomorphism of A, it is 
a central theorem of the Gelfand theory that h is given by integration against 
a positive measure on X (such are called representing measures). One of the 
central themes of Bishop's work is to find representing measures supported on 
the smallest possible set, and having the maximum number of good properties. 
In [7] he showed that there is such a set (unique in the metric case) on which 
there is a representing measure for every complex homomorphism. In [9] 
in collaboration with Karel deLeeuw, the assumption that A is an algebra 
was rendered superfluous; the theorem was reformulated for linear spaces 
of functions and reproven in that context. Going a step further, the theorem 
appears as a special case of this assertion: for C any convex set in a topological 
vector space E, every point in C is the barycenter of a measure supported on 
the set of exposed points of C (a point is exposed if it is the intersection of 
C with a hyperplane). It wasn't even known when such exposed points exist; 
in fact Klee [KL] had given an example of a bounded closed convex set in a 
Banach space with no exposed points. However, he conjectured that if C had 
interior then such points exist. In [20], in collaboration with R. R. Phelps, the 
conjecture is verified, and (at least in the case that E has countable topology) 
they show that there are enough exposed points so that the assertion made 
above is true. 

At the time this work was done Phelps and I shared an office in Campbell 
Hall. I'll never forget the joy in Bob's voice when they overcame the main 
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obstacle and he proclaimed, "That Bishop is a genius." A sentiment all of us 
working with Bishop would share at one time or another. 

Besides finding the best possible set to support representing measures, 
Bishop sought the best possible measures. Arens and Singer had observed 
quite a bit earlier that Jensen's inequality could be viewed as a fact about 
general uniform algebras rather than as a theorem of complex variables. In 
[21], Bishop showed that for every homomorphism of a uniform algebra, there 
is a representing measure for which Jensen's inequality holds. For most of us 
this seemed like just another nice step in the program of reducing the study 
of uniform algebras to function theory. But Errett had deeper purposes in 
mind; he saw that Jensen's inequality was the key to measuring the size of 
sets in terms of their negligibility from the point of view of function theory. 
This strange process, of first generalizing an abstract theorem from the special 
case, and then reapplying it in the abstract form to obtain new results in the 
special case, was one of Bishop's most telling techniques. We shall return to 
this use of Jensen measures. 

3. Global theory of Stein spaces. Papers [14, 15, 16, 21] consti
tute Errett Bishop's contribution to the analytic geometric study of analytic 
spaces. To Errett an analytic space (called "partially analytic") was a topo
logical union of complex manifolds ordered by decreasing dimension, such that 
each was contained in the closure of its predecessor. A continuous function 
on such an object is "analytic" if it is in fact holomorphic on every one of 
the complex manifolds. There are many bizarre examples of such objects; 
enough to conclude that there can be no good geometry of them. But Errett 
required that there be many global analytic functions, at least enough to sepa
rate points. He intuitively understood that the existence of analytic functions 
forced this very simple-minded geometric object to have all the attributes of 
the analytic spaces as defined by Grauert and Remmert. Therefore he should 
be able to derive everything one knew of analytic spaces (and more!) by 
concentrating on the function theory and cleverly manipulating those global 
functions. In [14] he does exactly that, ending with a proof of Remmert's 
embedding theorem of Stein spaces, starting only from this very elementary 
description of (partially) analytic spaces. 

The central tool of this work is the "special analytic polyhedron" whose 
ubiquitous existence is asserted in Theorem 3 of [14]. As alluded to at the 
beginning, this tool makes a Stein space (from the function-theoretic point 
of view) appear as little more than a fancy elaboration of the polydisk. The 
induction Oka employs to solve the Cousin problems already capitalizes on 
this conception, but here and in [15, 16] it flowers into the great dispatcher 
of hard theorems. Once again the Cousin problems are solved, but now with 
no induction, only elementary functional analysis (inspired by the ideas in 
[2]) and special analytic polyhedra. Similarly, the Remmert-Stein theorem on 
closures of analytic spaces, and the blowing down theorem for holomorphically 
convex spaces are quickly proven. Much of Chapters V and VII of [GR] is 
derived from these papers. The nuggets of deep insight are everywhere dense. 
As an example, Theorem 8 of [16] states that a partially analytic space with 
enough analytic functions to separate points is an analytic space. The proof 
sets up an appeal to the Baire category theorem using the Noetherian property 
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of local rings of analytic functions. When Errett first told me this argument, 
I was struck by how natural he thought it was to integrate algebra with an 
analysis in such an essential way. I came to realize that in Errett's mind all 
the pieces of mathematics fit together in a holistic way that was quite different 
from the way most people did science in those days. 

4. Analytic structure. We have already alluded several times to the 
continuing search for analyticity in the spectrum of a uniform algebra. We 
recalled that Wermer, in the late '50s, had developed powerful methods in the 
one-dimensional case, and in [19] these techniques in the hands of Bishop were 
given new meaning. Meanwhile Gleason [G] had shown that if the kernel of a 
homomorphism of a uniform algebra is finitely generated, then a neighborhood 
of that homomorphism (as a point in the spectrum) has the structure of an 
analytic space. Contemplation of this proof led us to a natural and elegant 
construction of the envelope of holomorphy of a domain spread over Gn (such 
a domain is a complex manifold M of dimension n together with a map to Cn 

with nowhere vanishing Jacobian). The envolope of holomorphy is then just 
the spectrum E(M) of the algebra A of functions holomorphic on M, and our 
observation was that by writing down the Taylor series of an analytic function, 
we could immediately deduce that E(M) had the structure of a domain spread 
over C n , with A appearing as the algebra of holomorphic functions on E(M). 
Now came the hard part: show that E{M) was a Stein manifold. Proofs of this 
fact had been given ten years before, and the central idea to those proofs was 
pseudoconvexity. In [21] Bishop was able to generalize to n dimensions just 
enough of the ideas of [19] to give a function-theoretic proof of this theorem. 

[21] is full of beautiful and deep ideas, some of which have become stan
dard tools in complex analysis, and others which have not yet been sufficiently 
tapped. At the time that was written, Errett could see how to easily prove the 
Remmert-Stein theorem on the removal of singularities of analytic sets using 
the concept of special analytic polyhedra. Together we further extended these 
ideas to prove also the Grauert-Remmert proper mapping theorem. Since 
these proofs were being incorporated into [GR], Errett saw no need for in
dependent publication. But he did see that these arguments, together with 
a skillful use of Jensen's inequality (guaranteed by the existence of Jensen 
measures, proven in [21]) could push the theorem on removable singularities 
much further. In [23] he does so, with this introduction: "We show that an 
analytic set A of pure dimension k defined in the complement of an analytic 
set B can always be continued through B, in case the 2fc-dimensional volume 
of A is finite or A\B has 2A;-dimensional Hausdorff measure 0. The first of 
these results was conjectured by S toll, and it can be applied to give a simple 
proof of St oil's theorem that an analytic subset of Cn is algebraic if its volume 
of appropriate dimension doesn't grow too fast near infinity. Along the way 
we give simple proofs of the theorems of Radó and Remmert and Stein, and 
derive some interesting properties for representing measures in certain alge
bras of analytic functions. In the last section we introduce a general notion 
of capacity and use it to prove a very general extension of the theorem of 
Remmert and Stein." These ideas formed the basis of further work on these 
problems, which appeared in the monographs [S, SI]. 
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5. Real submanifolds of complex submanifolds. Although linear par
tial differential operators of first order with real coefficients are completely 
understood by the Frobenius theorem, there were no theorems about them 
once the coefficients were allowed to be complex. In 1956 Hans Lewy [LI] 
gave an example of such an operator L in three real variables such that the 
inhomogeneous equation Lu = ƒ had no solutions. In the process he showed 
that if t/i, u>2 are two independent solutions of the homogeneous equation, 
then every solution is a holomorphic function of i*i, u^. In a subsequent 
paper [L2], Lewy generalized this observation to all such operators L with 
[L,L] 7̂  0, defined on an open neighborhood U of the origin in i23, by show
ing that the functions ui, u<i realize U as a real hypersurface in C2 lying on 
the boundary of a domain D such that every solution of Lu = 0 extends into 
D a s a holomorphic function. In this way the subject of CR manifolds was 
born. The key to Lewy's argument was the observation that a moving com
plex hyperplane (suitably chosen) intersected U in a family of curves bounding 
disks, and the integrated (dual) version of the condition Lu — 0 said that u 
was, on each such curve, the boundary value of a function analytic in the 
corresponding disk. Bishop realized that this latter argument generalized to 
any Ci^-manifold in C n , so long as the appropriate family of curves bound
ing disks existed. However, no way of wiggling hyperplanes or hypersurfaces 
would generate the desired curves. Ultimately Bishop realized that since a 
direct construction was not forthcoming, he would just have to prove that 
they existed. In [25] he did exactly that for fc-dimensional CE-manifolds in 
Cn with k > n. There is a large volume of subsequent literature on these 
"Bishop's disks," always attempting to explain the phenomenon of analytic 
continuation of CR-functions. 

In this paper Bishop recalls the observation made by Andy Browder that, 
for cohomological reasons, an orientable compact /c-dimensional manifold M 
in Ck cannot be polynomially convex: this means that the algebra of CR-
functions on M must extend somehow into a bigger set. His theorem on these 
analytic disks attempts to explain how. He goes on to say: "These problems 
seem to be very difficult. At least it is hard to prove global results. Therefore 
in this paper we consider primarily the local situation. Our only global result 
[has] to do with the exceptional points on a two sphere imbedded in C2 " 
In other words, the only global result really is a local result using the existence 
of special points. Elsewhere [COCA, problems] Bishop observes that for the 
distinguished boundary B of the polydisk in C2, there exist no local families of 
such analytic discs, although clearly there are large curves on B that bound 
analytic disks. He asks therefore to show that on any 2-torus in C2 there 
eixst closed curves that bound Riemann surfaces in the ambient space. Errett 
worked very hard to solve this problem; in particular he tried to show that in 
any deformation of B, the analytic discs move along as well. Nothing came 
of these attempts, and ony recently has there been some progress on hulls of 
tori. 

There is much of Errett's work that I have not covered: in particular 
his early work in operator theory, and finally the main work of his life in 
constructive mathematics. That I have not done so should not reflect on the 
significance of that work; only on my competence with it. The mathematical 
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community has yet to give a fair reading and assessment to the work of Errett 
Bishop in constructive mathematics. In this review I have tried to portray a 
mathematician who was often capable of envisioning what others could not. 
Perhaps some day our science will approach his constructive mathematics as 
the same kind of thinking and will work at understanding what Errett is trying 
to tell us. 
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The mathematical formalization of symmetry into the all-important ab
stract concept of a group had its origins in Galois' study of the solutions of 


